
School of Computer Science and Engineering

Faculty of Engineering

The University of New South Wales

Property Based Testing of C Code from

Haskell

by

Alexander Hodges

Thesis submitted as a requirement for the degree of

Bachelor of Engineering in Computer Engineering

Submitted: April 2019

Supervisor: Christine Rizkallah
Student ID: z5117819

Property Based Testing of C Code from Haskell Alexander Hodges

Abstract

Property based testing uses randomised test data generated from a property to test
code, which is useful for finding bugs in a given function. C is used in many popular
libraries and also for the development of low level performance critical applications.
However as C is an unsafe language, it is prone to hard crashes. When a program
hard crashes the testing framework is unable to find the minimal failing case and so
hinders the diagnosis of the failure. This project links C with property based testing
in a manner in which it is easy to specify the properties and determine the input
which caused the program to crash, while being able to use arbitrary C structures and
functions.

ii

Alexander Hodges Property Based Testing of C Code from Haskell

Contents

1 Introduction 1

1.1 Why we like C . 2

1.2 Trying C Based Property Testing . 3

1.3 Summary . 6

2 Background 7

2.1 Literature Review . 7

2.1.1 Why not unit tests? . 7

2.1.2 QuickCheck . 8

2.1.3 Quick Fuzz . 10

2.1.4 Theft . 11

2.1.5 The GHC Runtime System . 14

2.2 Conclusion . 14

3 Solution and Results 15

3.0.1 Initial Fork Investigation . 15

3.1 Initial Implementation . 15

3.1.1 Benchmarks . 18

3.1.2 Result Analysis . 21

3.2 New Design . 21

iii

Property Based Testing of C Code from Haskell Alexander Hodges

3.2.1 QuickCheck State . 22

3.2.2 Successful Case . 23

3.2.3 Crash Case . 25

3.3 Results . 26

3.3.1 Linux Desktop Results . 26

3.3.2 MacOS Results . 27

3.3.3 Analysis . 27

3.4 Limitations . 27

3.4.1 Priority Queue Example . 27

3.4.2 Multithreading . 29

3.5 Future Work . 29

3.5.1 Deep Integration with QuickCheck 29

4 Conclusion 30

Bibliography 31

iv

Alexander Hodges Property Based Testing of C Code from Haskell

Chapter 1

Introduction

When developers write programs they want to be sure that the program does what they

are expecting. One way a developer can convince themselves that a program is correct

is through testing the program. Testing works by either manually or automatically

specifying inputs to the piece of code the programmer wants to test and verifying

that the code produces the correct result. One way of generating this test data is

through property based testing. With this form of testing the programmer writes a

set of properties for each function they want to test. The testing framework will then

automatically generate random data and ensure that the function satisfies the specified

properties. If the testing framework finds a failing case then the framework will try to

shrink the input to find the smallest failing case. Shrinking is done by breaking down

the generated input into smaller parts and running the function against this smaller

data and seeing if the program still fails the property.

For an example of property based testing, suppose we have written a merge function

which given two lists of integers called xs and ys should combine then in such a way that

the returned list is also sorted. We also need a sort function to specify our property.

The example we will look at is written in Haskell [M+10] and uses the QuickCheck

[CH00] framework to specify the property. Firstly we define the type signatures of the

merge and sort functions:

1

Property Based Testing of C Code from Haskell Alexander Hodges

merge :: [Int] -> [Int] -> [Int]

sort :: [Int] -> [Int]

The first line states that the merge function must be given two lists of integers and will

return another list of integers. The second line states that the sort function should

be given a list of integers and should return another list of integers. With these two

functions we can now define our property:

prop_merge_sort :: [Int] -> [Int] -> Bool

prop_merge_sort xs ys =

(sort (xs ++ ys) == merge (sort xs) (sort ys))

The property states that appending the two lists xs and ys followed by sorting then

should produce the same list as sorting each list individually and then running our

merge function on these two now sorted lists. This property also has the advantage of

specifying the complete functional correctness of the merge function, meaning that any

program which passes this property is totally correct.

1.1 Why we like C

From the example above we have seen that we can property test Haskell code, however

there are many programs which are written in languages other than Haskell which also

need to be tested. C is an imperative language which has been used to write many

popular libraries; it is also useful for writing low level performant code. However, as C is

a low level language, memory management is up to the programmer [HB03]. Managing

memory manually along with the unsafe nature of C means that any one of the bugs in

a C program could result in a segmentation fault. A segmentation fault occurs when

the operating system (OS) detects the program is trying to access memory which it

shouldn’t; this usually results in the program being terminated. For this reason it is

beneficial to test C code before it is run in production.

2

Alexander Hodges Property Based Testing of C Code from Haskell

1.2 Trying C Based Property Testing

To test out how property based testing in C works, we will look at a custom ‘fast array’

library in C that implements the my reverse function. The goal is to write a property

for this function which tests to ensure that the my reverse acts like a normal reverse

function.

As this program is written in C we will start by using a C based property testing

framework called Theft [Sco17]. We will look at Theft in greater depth in Section 2.1.4.

Below is a Haskell version of the property which would be used to test a Haskell version

of the function followed by the Theft property to test the C code.

prop_reverse_same :: [Int] -> Property

prop_reverse_same xs = my_reverse xs == reverse xs

Figure 1.1: Pure Haskell Property

Figure 1.1 states that giving the custom my reverse function a list of integers should

return the same list as the one returned by the built in reverse function.

3

Property Based Testing of C Code from Haskell Alexander Hodges

static enum theft_trial_res prop_reverse(struct theft *t,

void *arg1) {

// Extract array from argument

int* orig = (int*) arg1;

// Allocate the memory for the copy of the array

int* copy = malloc(sizeof(int) * ARRAY_SIZE);

// Copy the array

for(int i = 0; i < ARRAY_SIZE; i++) {

copy[i] = orig[i];

}

// Perform the in place reverse

my_reverse(copy , ARRAY_SIZE);

// Verify it has been reversed successfully

for(int i = 0; i < ARRAY_SIZE; i++) {

if(orig[i] != copy[ARRAY_SIZE - i - 1]) {

return THEFT_TRIAL_FAIL;

}

}

return THEFT_TRIAL_PASS;

}

Figure 1.2: Theft Reverse Property

Figure 1.2 shows a Theft property for testing the my reverse function. The C function

in Figure 1.2 firstly creates a copy of the input array. The copy needs to be done due

to the my reverse function performing an in place reverse of the list. The my reverse

function is called on the copy of the array and then compared to the original input.

The comparison is done in the second for loop and ensures that the copy is a revered

version of the original input. To reduce the complexity of the code a static compile

time constant ARRAY SIZE was used to specify the size of the array. The static array

size limitation is not present in the Haskell version of the code.

This function, however, is just the property. Theft, as we will see in more detail in

Section 2.1.4, requires both a function to allocate the list data structure (including

setting the random values) as well as code to tell Theft how to run the actual test. As

we noted in Section 1.1 C is an unsafe language. When writing the Theft testing code

the lack of safety in C can result in the testing code itself crashing and needing to be

4

Alexander Hodges Property Based Testing of C Code from Haskell

debugged. Compared to the pure Haskell property the Theft code is more verbose and

more difficult to get correct.

Ideally, we want a solution like the pure Haskell property. To do this, Haskell can be

linked to C via a foreign function interface (FFI) [Jon01]. By using the FFI to make

C functions available from Haskell code we can then use QuickCheck to test these

functions. Below is the result of combining QuickCheck with the FFI:

foreign import ccall unsafe "fastlist.h my_reverse"

my_reverse :: Ptr CInt -> CInt -> IO ()

prop_reverse_same :: [CInt] -> Property

prop_reverse_same xs = ioProperty $ do

p <- newArray xs

my_reverse p (fromIntegral $ length xs)

xs ’ <- peekArray (length xs) p

pure (xs’ == reverse xs)

Figure 1.3: C FFI Based Property

Figure 1.3 is more complicated than the pure Haskell implementation, due to the C

code not having a guarantee of purity as well as having to pass Haskell data structures

to the C code. The lack of purity causes the resulting Haskell type of the function to

be wrapped in the IO monad. The type signature for the C function can be seen on the

first line with the call to foreign import ccall unsafe. The ioProperty function

is needed to be able to do IO operations inside a property. Finally the newArray and

peekArray functions allow the programmer to create and read a C compatible array

from and into a Haskell style list respectively.

This unlike the Theft example is the entire code needed to test the my reverse function,

however by running the prop reverse same with QuickCheck it immediately finds a

case which causes the function to access an invalid memory location. The OS then

sends the segmentation violation (SIGSEGV) signal, terminating the process. The

termination results in the following message:

5

Property Based Testing of C Code from Haskell Alexander Hodges

This error message is not very helpful as it fails tell us what input caused the program to

crash. To be able to identify the cause of the bug, the testing framework must provide

the case that caused the program to crash. Without the failing test case, we would not

be able to reproduce the bug and so it would remain present in the program until the

programmer is able to determine how to reproduce it. As we will see in Section 2.1.4,

Theft is able to work around this problem by using the fork system call.

1.3 Summary

Property based testing is one of the ways a developer can gain more confidence in

their program. We have seen in the above example that writing these properties in the

Haskell language is much simpler than using a C based approach, and we were able to

link Haskell to C via the FFI. However, the problem of dealing with unexpected crashes

needs some further insight, as we need to determine how to extract the failing case.

Moving forward we now have the following goal to keep in mind as we look at other

projects and our design:

To easily write properties for C code which are tested automatically and to provide

helpful information on failure.

6

Alexander Hodges Property Based Testing of C Code from Haskell

Chapter 2

Background

In this chapter we will investigate various tools and methodologies around the property

based testing area and testing in general.

2.1 Literature Review

2.1.1 Why not unit tests?

Unit tests are another form of testing that a programmer can use to ensure the program

behaves as expected [CL02]. They work by specifying the inputs to the program and

the expected output. A simple example of a unit test would be testing the reverse

of the list [1,2,3] is [3,2,1] an example using the my reverse from Section 1.2 is

shown below:

test_one :: [Int] -> Bool

test_one xs = [3,2,1] == (my_reverse [1,2,3])

The unit testing framework will then run all the tests and report on any which didn’t

produce the expected output. There are some disadvantages to this method, however.

Firstly when testing multiple functions that interact, the developer has to write a

7

Property Based Testing of C Code from Haskell Alexander Hodges

polynomial number of tests [Hug16] to ensure that each interaction of the function is

tested. An example of this would be if a calculator applications was being developed

the programmer would need to write tests for both the addition and multiplication

parts. The programmer would also need to write tests which combine the addition and

multiplication operations in various ways to ensure that they still behave as expected.

Another downside to unit testing can be seen when there is a change to how the function

works, the unit tests will need to be reviewed and potentially re-written to conform

to the new functionality. Returning to the calculator example, if there was a change

in how the addition function worked the developer would need to not only change

the addition tests but also the tests which combine addition with multiplication. By

using properties a change in the functionality would only need to change the related

properties and the testing framework will generate the new tests.

Finally, as the developer needs to write each test individually, there is a chance that the

developer misses an edge case that they did not consider. For the my reverse example

it could be that an input list size of 100 could break by allocating memory incorrectly.

A property based testing framework is able to generate hundreds of test cases for each

run, which reduces the chance a subtle bug like this would be able to slip through.

2.1.2 QuickCheck

QuickCheck is a property based testing framework originally written for Haskell [CH00],

the QuickCheck program has now been ported to many more languages [Hug16]. Haskell,

as a purely functional language is well suited to property based testing as an input to

the function will always produce the same output [CH00].

To support random data generation, the QuickCheck tool must be able to generate

an arbitrary value for the input of the function. In Haskell this is done using the

Arbitrary type class. For a type to be instance of the type class, the programmer

must specify how to randomly generate a value for that type. QuickCheck comes with

instances of these type classes for a large selection of the built in Haskell data types

8

Alexander Hodges Property Based Testing of C Code from Haskell

which means that for functions which use the built in types, only the property itself

needs to be specified and QuickCheck will handle the rest.

After specifying how to generate the test data (if needed), the next step is to actually

specify the properties. As seen in the introduction, these properties can be quite short

while still stating a large amount of information.

my_prop :: [Int] -> [Int] -> Bool

my_prop xs ys = (sort (xs ++ ys) == merge (sort xs) (sort ys))

Taking a deeper look into this property, the first line is the type signature which says

this property is a function which takes two lists (with elements that can be ordered)

and returns a property. As the example only uses lists, there is no need to specify how

to generate the data. QuickCheck will use the value generator to produce a series of

lists which it will then pass to the property to check if it holds. The left hand side of

the == says to combine the two lists together and then sort the result. The right hand

side states that each individual list should be sorted before being passed to the merge

function; once sorted they are passed to the function and the resulting list is checked

to ensure it equals the left hand side.

Now that the property has been specified, it can now be tested using the QuickCheck

library. When the quickCheck function from QuickCheck is invoked it will use the

provided data generation method to produce test data; it will then feed that into the

property and check to see that it holds. If the property doesn’t hold then QuickCheck

will try to determine what about the specific part of the input caused the failure; this is

done through a process called shrinking. The shrinking process gets the original input

that caused the failure case and takes a sub-part of it. The sub-part is then tested

against the property and if it fails again QuickCheck will shrink the sub-part. The

shrinking process finishes when no sub-parts cause the property to not hold. When us-

ing the included types in Haskell the shrinking process is automatic. Once the smallest

input has been found it will report it to the user along with whichever property failed.

To see shrinking in action suppose we have a wrongly implemented merge function:

9

Property Based Testing of C Code from Haskell Alexander Hodges

merge xs ys = (sort xs) ++ ys

Running the my prop through QuickCheck quickly results in it finding a failing case

and shrinking it. Both cases can be seen below:

(a) Failing Case

(b) Shrunk Case

Summary

Using the QuickCheck library along with Haskell allows for the simple specification of

properties and shrinking of failing cases. However, as seen in the introduction it can not

detect when a segmentation fault occurs due to the OS killing the process. There are

some potential workarounds to this problem which we will investigate in Section 2.1.3

and Section 2.1.4

2.1.3 Quick Fuzz

QuickFuzz is another Haskell based testing framework. Unlike QuickCheck it does not

test properties but uses a technique called fuzzing which tests a whole program against

invalid inputs. QuickFuzz has a particular focus on fuzzing file formats and uses a

GIF image file as an example. Of interest is the fact that QuickFuzz is designed to

detect crashes. QuickFuzz internally uses the QuickCheck framework for generating

the random test data and shrinking any failing cases.

10

Alexander Hodges Property Based Testing of C Code from Haskell

To be able to specify how the file is laid out, the user must provide a data type which

represents the structure of the file. This data structure can then be used by QuickCheck

to randomly generate values which represent the file type. For the data to be randomly

generated by QuickCheck the Arbitrary instances need to be defined. To automate

this the MegaDeTH tool is used to derive these instances automatically [GCB16].

Once QuickCheck has generated the data it must then be written to a file which can

then be read by the program. This requires the user to create an encode function which

takes an instance of the data structure and creates a file of that type from it. Finally,

QuickFuzz can the run the program using the user provided command line. As the

program is run in a separate OS process any crashes can be detected by QuickFuzz. If

the program crashes QuickFuzz will then use QuickCheck’s shrinking functionality to

try and find the smallest possible failing case.

Summary

QuickFuzz provides a potential solution to being able to detect program crashes, how-

ever this method has some limitations. As QuickFuzz tests a complete program this

limits the granularity to the whole program. If the user wanted finer grained testing,

such as testing an individual function then they would need to use another testing

framework. We want our framework to be able to test any function without having to

write an entire program around it.

2.1.4 Theft

As mentioned in Section 1.2 Theft is a property based testing framework that uses

the C language to specify properties. To test programs using Theft the user needs to

specify at least a function to allocate the input data and the property that the user

wants to test with.

The first function, the allocation function is similar to the Arbitrary instance from

11

Property Based Testing of C Code from Haskell Alexander Hodges

QuickCheck. The allocation function must create a random instance of the input data.

The Theft library provides the theft random bits function to generate random bits

from the internal Theft seed. This seed needs to be used to ensure that when Theft

runs the test again the same failure are observed as well as enabling Theft to shrink

the failing input. Unlike QuickCheck the allocation function must also allocate the

memory for the input data due to Theft not knowing anything about the structure of

the data.

Below we have the allocation function for the list example introduced in Section 1.2

followed by the implementation of the Arbitrary instance for the Haskell version.

enum theft_alloc_res list_alloc_cb(struct theft *t, void *env ,

void ** instance) {

int* ret = malloc(sizeof(int) * ARRAY_SIZE);

for(int i = 0; i < ARRAY_SIZE; i++) {

ret[i] = theft_random_bits(t, 32);

}

*instance = ret;

return THEFT_ALLOC_OK;

}

instance Arbitrary Int where

arbitrary = do

max <- getSize

choose (-max , max)

shrink num = [0, 1, -1] ++ [-(num -1) ..(num -1)]

The Haskell implementation requires two Arbitrary instances to be able to generate

a random list of integers. Once we have defined the instance for integers however,

we get the list instance for free as QuickCheck’s Arbitrary instance for lists works

on any value of a list’s containing type. We can also see that the Haskell instance

includes a shrink function which eases debugging as it allows QuickCheck to find the

smallest value which causes the crash. The larger number of helper functions provided

by QuickCheck along with us not having to do memory management allow us to write

the instance in Haskell more succinctly.

12

Alexander Hodges Property Based Testing of C Code from Haskell

The other function the user needs to specify is the actual property. The property

function takes two arguments; the first is a struct which holds the Theft internal state

and the second argument is a pointer (void *) which points to the randomly generated

input data from the alloc function. As the input data is passed as a void pointer Theft

needs not know anything about the layout of the data structure it is all handled by

the functions written by the user. The passing of the void pointer also highlights the

issue with using C as the language for writing the properties: the user must deal with

C’s lack of type safety. If these pointer operations are mishandled it could result in a

segmentation fault in the testing code itself, which would require painful debugging.

To run the property tests the developer must also tell Theft how to run it. The

configuration exposes the fork option which tells Theft to run the test in another OS

process. The fork system call creates a copy of the process called the child process. If

the child process gets killed by the OS such as through a segmentation fault, the parent

process can detect this. Once Theft has detected the crash it can then apply shrinking,

just like QuickCheck to determine the smallest input which causes the program to

crash.

Theft also has other optional functions that can be specified, these include free, hash,

shrink and print. The shrink function must be specified to be able to tell Theft how

to shrink the input data. The limited type system of C means that if the user wants

shrinking support, this function must always be provided. This contrasts to QuickCheck

which can automatically shrink data in most cases as QuickCheck provides a variety of

Arbitrary instances as part of the implementation.

Summary

Theft provides a basis for inspiration on how to solve the problem of property based

testing of C code. However, as seen in Section 1.2, specifying these properties in C is

a very verbose process when compared to Haskell’s QuickCheck.

13

Property Based Testing of C Code from Haskell Alexander Hodges

2.1.5 The GHC Runtime System

The Haskell language uses a runtime system along with lightweight threads to han-

dle multitasking [MPJS09]. The lightweight threads are transparent to the operating

system, so there can be multiple lightweight threads assigned to a single OS thread.

While using lightweight threads makes thread creation cheap, allowing for potentially

millions of threads, this creates an issue with the fork system call. When the fork is

called from Haskell, only the caller’s lightweight thread is copied to the child process,

meaning that any shared variables accessed from the child are now invalid [oG02]. This

problem isn’t faced by Theft due to the C language’s lack of runtime, but will need to

be considered for our design due to our use of Haskell specifications.

2.2 Conclusion

We have seen that property based testing is a helpful aid to finding bugs in programs

along with various techniques to be able to detect and diagnose crashes. However, we

have not found a solution which completely matches our goal of being able to easily

specify properties of a program, and test them in a manner which can detect crashes.

The next chapter will outline my progress into developing a solution which meets our

goal.

14

Alexander Hodges Property Based Testing of C Code from Haskell

Chapter 3

Solution and Results

3.0.1 Initial Fork Investigation

Before any implementation could be started the fork system call would need to be

tested to ensure that it worked with the GHC runtime as we discussed in Section 2.1.5.

The fork system call wrapper in GHC came with a warning [oG02] concerning the

use of shared variables not being passed to the child process. The initial hypothesis

was that as QuickCheck wasn’t multi-threaded it wouldn’t create any separate threads

To investigate this I built a simple program which would call fork and then run a

QuickCheck test in the child process, this was a success and evolved into the first

implementation.

3.1 Initial Implementation

For the first implementation we will use a simple design which works in a similar way

to Theft. This design uses the fork system call to create a child process. The child

process can then run the unsafe property in a safe environment. If the C code were

to cause a crash the parent process will be unaffected as only the child process will be

killed.

15

Property Based Testing of C Code from Haskell Alexander Hodges

For this design the tester needs to provide the QuickCheck property written in Haskell

and the C code that the Haskell property will call via the FFI. The implementation,

called quickFork has the following type:

quickFork :: Arbitrary a => Testable b => (a -> b) -> a ->

Property

The developer will pass the function a -> b which represents the property that they

want to test. The second a value is generated by QuickCheck and the returned

Property is the final result of the running the function that was provided. As the

fork system call is made inside the custom property generated by quickFork, the

fork system call is completely transparent to QuickCheck. By making QuickCheck

unaware of the spawning of new child processes we can get the automatic shrinking

and data generation for free.

16

Alexander Hodges Property Based Testing of C Code from Haskell

Parent Child

quickFork property

custom prop
quickCheck custom prop

fork()

property

input

check property

result
result over IPC

exit status

For each testFor each test

Figure 3.1: Property Verification

Figure 3.1 shows the steps that are taken to safely verify the property. Firstly the

original property that the developer provides is passed to the quickFork function, this

wraps the given property to call the fork system call. Next QuickCheck is called,

passing in the custom property returned by quickFork. QuickCheck will then generate

the first test data and pass it to the custom property. The custom property will then

call fork and test the property against the data QuickCheck generated. If the child

doesn’t crash it will send a pass or fail message to the parent over a pipe depending

on if the property held or not. If the child crashes the parent process detects this by

checking the exit code of the child, if it is non 0 the parent will treat that as a failure

too. The parent will then return either True or False as the result of the custom

property to QuickCheck. If the custom property fails QuickCheck can begin shrinking

17

Property Based Testing of C Code from Haskell Alexander Hodges

the test data otherwise QuickCheck will generate another test input and run through

the process in the For each test of Figure 3.1.

3.1.1 Benchmarks

To test the performance impact four types tests were ran on both a Linux based desktop

machine, which has a Intel 4790k processor along with 16GB of ram and a 2017 13

inch MacBook Pro running MacOS 10.14.6, both machines used GHC 8.6.5. The test

revolved around a my reverse function written in C and was compared with reverse

from the Haskell base package. The reverse C function is shown below, it takes in an

array of integers called l and the size of the array as size:

void my_reverse(int* l, int size) {

if(size <= 1)

return;

int t;

int front = 0;

int back = size - 1;

while(front < back) {

t = l[front];

l[front] = l[back];

l[back] = t;

front ++;

back --;

}

}

I used the same prop reverse same as we saw in Section 1.2 to verify the correctness

of both the Haskell and C reverse functions. The four tests involved testing the C

and Haskell code both with and without using the fork system call for each test.

For comparison of the slowdown the C based code was also tested with the Theft [Sco17]

property testing framework. Each variation of the test was run 1000 times with the

average of these in the appendix. For the testing using QuickCheck I used the default

18

Alexander Hodges Property Based Testing of C Code from Haskell

arguments except for printing which was disabled. The graph shows the wall time that

the program spent running along with the testing framework and language the function

to be tested was written in.

Linux Desktop Results

0 2 · 10−2 4 · 10−2 6 · 10−2 8 · 10−2 0.1

QuickCheck and Haskell

QuickCheck and C

QuickCheck and Haskell with Fork

QuickCheck and C with Fork

Theft

Theft with Fork

Time (seconds)

Wall time for Verifying QuickCheck Property (Linux)

Both QuickCheck results without using the fork call performed roughly the same and

adding the fork system call also made both about 2.5x slower. From this we can deduce

that the use of the testing of the C based code over the foreign function interface had

little impact relative to the large slowdown caused by calling the fork system call. We

can also see that both the Theft and QuickCheck based solution experienced a similar

magnitude of slowdown when executing the fork system call for each test. When I

tested on the Mac OS based laptop we got some interesting results.

19

Property Based Testing of C Code from Haskell Alexander Hodges

Mac OS Results

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

QuickCheck and Haskell

QuickCheck and C

QuickCheck and Haskell with Fork

QuickCheck and C with Fork

Theft

Theft with Fork

Time (seconds)

Wall time for Verifying QuickCheck Property (Mac OS)

As the Theft implementation didn’t have such a large slowdown when testing with the

fork call enabled, it looked like the combination of Mac OS, GHC and the fork system

call was causing a very large slowdown. As the feasibility investigation for using fork

was completed quicker than expected I was able to do some investigation into what was

causing this significant slowdown.

To start off I looked at the breakdown the time command gives. This breakdown

includes the amount of time spent making system calls, the time spent running appli-

cation code and the total time it took, including any waiting. Below is a breakdown

of the time spent in the application code, making system calls and waiting for the

QuickCheck testing of the C code with the fork system call enabled.

0 0.2 0.4 0.6 0.8 1 1.2 1.4

User

System

Other

Time (seconds)

Time Breakdown

20

Alexander Hodges Property Based Testing of C Code from Haskell

This indicates that the program spends a large proportion of time waiting. By calling

exitImmediately just before the code handed back to GHC resulted in a significant

reduction in the wall time. The exitImmediately call runs the C function exit by-

passing any cleanup the GHC does when the process finishes. The new timings with

the exitImmediately call are below.

0 5 · 10−2 0.1 0.15 0.2 0.25

User

System

Other

Time (seconds)

Time Breakdown

The large reduction in the time taken, especially in the other section would indicate

that a large portion of the time is spent cleaning up the child processes. Testing this

on the Linux desktop didn’t help with reducing the speed.

3.1.2 Result Analysis

From these results it is clear that the fork system call, especially on MacOS has a large

overhead with our use case. As a developer might run these tests many times during

their development cycle we want these properties to be verified as quickly as possible.

So even though we have a working solution it is clear from these results that we need

to find a way to reduce the number of fork calls quickFork makes.

3.2 New Design

To reduce the number of fork system calls that are made the child process should try

and run as many tests as possible with the parent only re-spawning the thread if the

child process were to crash. To accomplish this we need to make two changes to the

21

Property Based Testing of C Code from Haskell Alexander Hodges

way quickFork runs its tests. Firstly, as the child process is now running more than

one test over its lifetime the parent process needs to become aware of what test the

child is running in case the child crashes. Secondly, as the child now has to run multiple

property tests we need to change the way a developer runs the tests. Instead of using

quickFork to transform the given property into one which transparently uses the fork

system call we must now pass the property to the child process and the child will then

invoke QuickCheck itself. From the fast list example we saw in Section 1.2 a developer

would originally test the property in a safe manner by running:

quickCheck (quickFork prop_reverse_same)

Here the quickFork is transforming the property as described in Section 3.1. Using

our new design which calls QuickCheck in the child, this would now simply become:

quickFork prop_reverse_same

As quickFork will now call QuickCheck internally, the developer can now pass their

property directly to the quickFork function. Consequently the quickFork function

now has the following type signature:

quickFork :: (Show a, Arbitrary a, Testable prop)

=> (a -> prop) -> IO ()

With a -> prop being the property the developer wishes to test. This is a function

which takes an a and will return a QuickCheck compatible property which it uses

to determine whether that input has passed or failed. The new implementation will

not return anything but rather print the results to standard out like the quickCheck

function.

3.2.1 QuickCheck State

For each test iteration the child process may die, this causes all the information in the

child process to be lost. To ensure the parent process knows which input the child is

about to run we need to look into how QuickCheck generates its test data.

22

Alexander Hodges Property Based Testing of C Code from Haskell

To generate its test data QuickCheck creates a QCGen. The QCGen is the initial seed

from which QuickCheck generates the sequence of test data to be used as input into the

given property. By using the same QCGen QuickCheck will generate the same sequence

of test data. However this only allows us to determine the starting values, QuickCheck

has no external method which allows us to identify where in the sequence QuickCheck

is up to.

3.2.2 Successful Case

Parent Child

generate QCGen

QCGen

fork()

property

QCGen

quickCheck property QCGen

result of property

result over IPC

exit success

Figure 3.2: Successful property verification

Figure 3.2 shows the sequence of events that occurs when a property is able to be

verified without the child process crashing. The first step is to create the seed, called

the QCGen which as described in Section 3.2.1 is used by QuickCheck to generate the

test data. The seed is generated in the parent process so it can be reused during the

shrinking phase if the child process crashes.

Next the parent uses the fork to create the child process, the parent can then pass

the property and the QCGen to the child process. The child process with then run

23

Property Based Testing of C Code from Haskell Alexander Hodges

the quickCheck function against the given property with the QCGen as the starting

seed. For this case where no crashes occur the child can send the result of whether the

property held or not back to the parent process over IPC. As the quickCheck function

will verify the property only one fork system call needs to be made when the child

process doesn’t crash. In the next section we will look at what happens when the child

does crash.

24

Alexander Hodges Property Based Testing of C Code from Haskell

3.2.3 Crash Case

Parent Child

generate QCGen

QCGen

fork()

property

QCGen

quickCheck property QCGen

crash
exit failure

quickCheck custom prop QCGen

fork()

property

QCGen

check property

result
result over IPC

exit status

For each testFor each test

Figure 3.3: Crash property verification

Figure 3.3 shows the flow of what happens when the child process crashes during its

verification of the property. When the first child spawned crashes we now have a failing

test case, however we want use QuickCheck’s shrinking ability to find the smallest failing

25

Property Based Testing of C Code from Haskell Alexander Hodges

input. To find the smallest input quickFork will switch over to using the same method

discussed in Section 3.1. The key difference is that quickCheck is called with the QCGen

which caused the first crash. This ensures that QuickCheck will generate the same test

data which caused the crash.

3.3 Results

To observe the performance of the new implementation I ran the same property test

as described in Section 3.1.1 but now using the new implementation. For reference the

old implementation and baseline times are taken from the C + Haskell test with and

without using the fork system call respectively.

3.3.1 Linux Desktop Results

4 · 10−2 5 · 10−2 6 · 10−2 7 · 10−2 8 · 10−2 9 · 10−2 0.1

Baseline

Old Implementation

New Implementation

Time (seconds)

Wall time for Verifying QuickCheck Property (Linux)

26

Alexander Hodges Property Based Testing of C Code from Haskell

3.3.2 MacOS Results

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

Baseline

Old Implementation

New Implementation

Time (seconds)

Wall time for Verifying QuickCheck Property (MacOS)

3.3.3 Analysis

As this is the happy case, where no crashes occur we can see a significant speedup as

we now only need to use the fork system call once. For the case where a crash does

occur there would be no change in speed as quickFork will go back to using the original

design. This is acceptable as we only go back to the slower method when we have found

a QCGen which causes a crash and we want to start the shrinking process. During this

shrinking process we are expecting most property checks to result in a crash as we are

trying to locate the smallest value to cause the crash. We will look at how this could

be improved in Section 3.5.1.

3.4 Limitations

3.4.1 Priority Queue Example

To test a more complicated example compared to the fast reverse function we saw in

Section 1.2 I developed a model based test for a C based priority queue. The priority

queue was developed to keep track of registered timers, with the timer which was to be

fired next being the next element to be popped off the queue. The model based test

works by generating a random set of operations and performing them on the concrete

27

Property Based Testing of C Code from Haskell Alexander Hodges

model and an abstract model. The results of the operations are then compared and

any differences are an error.

The main difficulty in implementing the testing code for the priority queue was linking

the C to the Haskell code. Lots of boiler plate was needed to ensure that the C structs

could be passed back and forth to the Haskell code. Two modifications were needed

to be done to the C code. Firstly a function to allocate the priority queue had to be

written as the implementation had assumed it was allocated elsewhere. Secondly the

calls to the logging library were removed to speed up the integration with the Haskell

code.

Another implementation issue was the number of arguments. The property took two

arguments, the size of the queue and a list of actions to perform on the queue of that

size. An issue occurred when quickFork went from its first phase to the shrinking

phase. In the shrinking phase two pieces of test input were generated at different

times compared to the initial run. Generating the inputs in a differing order produced

different results when compared to the first phase. To remedy this the developer has

to use the uncurry function to turn all arguments into a single tuple, forcing them to

be generated at the same time. The command used to test the property pq prop went

from:

pq_prop :: QueueSize -> [Action] -> Property

quickFork :: (Show a, Arbitrary a, Testable prop)

=> (a -> prop) -> IO ()

quickFork pq_prop

to:

pq_prop :: QueueSize -> [Action] -> Property

quickFork :: (Show a, Arbitrary a, Testable prop)

=> (a -> prop) -> IO ()

quickFork (uncurry pq_prop)

28

Alexander Hodges Property Based Testing of C Code from Haskell

3.4.2 Multithreading

As the fork call from Haskell only copies the single thread that fork is called from care

must be taken when dealing with multi-threaded properties. Specifically using multiple

threads from within a property is safe along with using threads in the C code which

is tested. However if a thread was spawned before the quickFork function was called

the thread won’t be included when the fork call is made, so properties won’t be able

to communicate with the thread.

3.5 Future Work

3.5.1 Deep Integration with QuickCheck

By integrating the quickFork into the QuickCheck library it would allow more potential

performance improvements. As quickFork would be part of QuickCheck it would allows

greater control over the state. Having access to QuickCheck’s internals would mean we

could save the state before each test. With the state saved before each test we can then

run as many tests in the child process, even during the shrinking process until one of

the tests cause a crash.

29

Property Based Testing of C Code from Haskell Alexander Hodges

Chapter 4

Conclusion

By using a wrapper around QuickCheck called quickFork we can safely use property

based testing to test potentially crash prone C functions. By going through the Haskell

FFI we can avoid the need to test entire programs like Quick Fuzz. By specifying the

properties in Haskell we are able write easier to read and more succinct properties as

compared to other solutions such as Theft. We have also seen through the Priority

Queue Example that through small modifications, more complicated properties can be

tested which deal with custom C data types.

30

Alexander Hodges Property Based Testing of C Code from Haskell

Bibliography

[CH00] Koen Claessen and John Hughes. Quickcheck: A lightweight tool for random
testing of haskell programs. In Proceedings of the Fifth ACM SIGPLAN
International Conference on Functional Programming, ICFP ’00, pages 268–
279, New York, NY, USA, 2000. ACM.

[CL02] Yoonsik Cheon and Gary T Leavens. A simple and practical approach to unit
testing: The jml and junit way. In European Conference on Object-Oriented
Programming, pages 231–255. Springer, 2002.

[GCB16] Gustavo Grieco, Mart́ın Ceresa, and Pablo Buiras. Quickfuzz: An automatic
random fuzzer for common file formats. In Proceedings of the 9th Interna-
tional Symposium on Haskell, Haskell 2016, pages 13–20, New York, NY,
USA, 2016. ACM.

[HB03] Eric Haugh and Matt Bishop. Testing c programs for buffer overflow vul-
nerabilities. In NDSS. Citeseer, 2003.

[Hug16] John Hughes. Experiences with QuickCheck: testing the hard stuff and
staying sane. In A List of Successes That Can Change the World, pages
169–186. Springer, 2016.

[Jon01] Simon Peyton Jones. Tackling the awkward squad: monadic input/output,
concurrency, exceptions, and foreign-language calls in Haskell. Engineering
theories of software construction, 180:47, 2001.

[M+10] Simon Marlow et al. Haskell 2010 language report. Available online
http://www. haskell. org/(May 2011), 2010.

[MPJS09] Simon Marlow, Simon Peyton Jones, and Satnam Singh. Runtime support
for multicore haskell. In Proceedings of the 14th ACM SIGPLAN Interna-
tional Conference on Functional Programming, ICFP ’09, pages 65–78, New
York, NY, USA, 2009. ACM.

[oG02] The University of Glasgow. System.posix.process.bytestring.
https://hackage.haskell.org/package/unix-2.7.2.2/docs/

System-Posix-Process-ByteString.html#v:forkProcess, 2002. Ac-
cessed: 2019-04-25.

[Sco17] Scott Vokes. theft: property-based testing for C. https://github.com/

silentbicycle/theft, 2017. Accessed: 2019-04-22.

31

https://hackage.haskell.org/package/unix-2.7.2.2/docs/System-Posix-Process-ByteString.html#v:forkProcess
https://hackage.haskell.org/package/unix-2.7.2.2/docs/System-Posix-Process-ByteString.html#v:forkProcess
https://github.com/silentbicycle/theft
https://github.com/silentbicycle/theft

	Introduction
	Why we like C
	Trying C Based Property Testing
	Summary

	Background
	Literature Review
	Why not unit tests?
	QuickCheck
	Quick Fuzz
	Theft
	The GHC Runtime System

	Conclusion

	Solution and Results
	Initial Fork Investigation
	Initial Implementation
	Benchmarks
	Result Analysis

	New Design
	QuickCheck State
	Successful Case
	Crash Case

	Results
	Linux Desktop Results
	MacOS Results
	Analysis

	Limitations
	Priority Queue Example
	Multithreading

	Future Work
	Deep Integration with QuickCheck

	Conclusion
	Bibliography

