
Pretending to verify a 
train controller 

with Lustre



First, we need a pretend controller

• Controls the high level state machine


• Supervises the system



Simple controller
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with failover mode
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How do we implement this?

• Runs on microcontroller


• Limited space


• Can’t have out-of-memory errors


• Predictable runtime
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Bad

are the engines on or off in DRIVING state?



Beautiful
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More beautiful





Good

better than C: clear that engines always on in DRIVING



Good

better than C: clear that engines always on in DRIVING

better than diagram: unambiguous transition precedence



Workflow

• Write Lustre


• Verify Lustre implementation of FSM


• Compile to C


• Integrate generated C with rest of system



A property we might want: 
“if temp is bad, air con is off”
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Checking properties with Kind2
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Fix is easy…
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Success!



Conclusion

• It’s a simple idea, but it fills a niche that I don’t know of 
any other solutions for.


• I think Lustre is a language that really nails the “less 
expressive is better” as it allows strong reasoning about 
embedded code


