
Pretending to verify a 
train controller 

with Lustre



First, we need a pretend controller

• Controls the high level state machine


• Supervises the system



Simple controller

Off Idle Driving¬engines 
¬aircon

¬engines 
aircon

engines 
aircon

power ignition

¬ignition¬power

¬power



with failover mode

Off Idle Driving¬engines 
¬aircon

¬engines 
aircon

engines 
aircon

power ignition

¬ignition¬power \/ temp_bad

¬power

Failover
engines 
¬aircon

temp_bad

¬power \/ ¬ignition



How do we implement this?

• Runs on microcontroller


• Limited space


• Can’t have out-of-memory errors


• Predictable runtime



How do we implement this?

• Runs on microcontroller => C (of course)


• Limited space => C (no runtime)


• Can’t have out-of-memory errors => C (don’t malloc)


• Predictable runtime => C (don’t branch too much)



How do we implement this?

• Runs on microcontroller => C (of course)


• Limited space => C (no runtime)


• Can’t have out-of-memory errors => C (don’t malloc)


• Predictable runtime => C (don’t branch too much)

:’(





Bad

are the engines on or off in DRIVING state?



Beautiful

Off Idle Driving¬engines 
¬aircon

¬engines 
aircon

engines 
aircon

power ignition

¬ignition¬power \/ temp_bad

¬power

Failover
engines 
¬aircon

temp_bad

¬power \/ ¬ignition



More beautiful





Good

better than C: clear that engines always on in DRIVING



Good

better than C: clear that engines always on in DRIVING

better than diagram: unambiguous transition precedence



Workflow

• Write Lustre


• Verify Lustre implementation of FSM


• Compile to C


• Integrate generated C with rest of system



A property we might want: 
“if temp is bad, air con is off”

Off Idle Driving¬engines 
¬aircon

¬engines 
aircon

engines 
aircon

power /\ ¬temp_bad ignition

¬ignition¬power \/ temp_bad

¬power

Failover
engines 
¬aircon

temp_bad

¬power \/ ¬ignition



Checking properties with Kind2



Checking properties with Kind2



Fix is easy…



Fix is easy…



Success!



Conclusion

• It’s a simple idea, but it fills a niche that I don’t know of 
any other solutions for.


• I think Lustre is a language that really nails the “less 
expressive is better” as it allows strong reasoning about 
embedded code


