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ABSTRACT
Compilers for stream programs often rely on a fusion transforma-
tion to convert the implied dataflow network into low-level iteration
based code. Different fusion transformations handle different sorts of
networks, with the distinguishing criteria being whether the network
may contain splits and joins, and whether the set of fusible operators
can be extended. We present the first fusion system that simultane-
ously satisfies all three of these criteria: networks can contain splits,
joins, and new operators can be added to the system without needing
to modify the overall fusion transformation.
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1 INTRODUCTION
Suppose we have two input streams of numeric identifiers, and wish
to perform some analysis on them. The identifiers from both streams
are sorted, but may include duplicates. We wish to produce an output
stream of unique identifiers from the first input stream, as well as
produce the unique union of both streams. Here is how we might
write the source code, where S is for S-tream.

uniquesUnion : S Nat -> S Nat -> (S Nat, S Nat)
uniquesUnion sIn1 sIn2
= let sUnique = group sIn1

sMerged = merge sIn1 sIn2
sUnion = group sMerged

in (sUnique, sUnion)

The group operator detects groups of consecutive identical ele-
ments and emits a single representative, while merge combines two
sorted streams so that the output remains sorted. This example has a
few interesting properties. Firstly, the data-access pattern of merge
is value-dependent, meaning that the order in which merge pulls
values from sIn1 and sIn2 depends on the values themselves: at
each step, merge must compare the values from both streams, and
choose the stream with the smaller value to pull from.

Secondly, although sIn1 occurs twice in the program, at runtime
we only want to handle the elements of each stream once. To achieve
this, the compiled program must coordinate between the two uses
of sIn1, so that a new value is read only when both the group and
merge operators are ready to receive it. Finally, as the stream length
is unbounded, we cannot buffer an arbitrary number of elements read
from either stream, or we risk running out of local storage space.
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To implement this program we might write each operator as
its own concurrent process, sending stream elements over intra-
process channels. Developing this could be easy or hard, depending
on the available language features for concurrency. However, the
performance tuning of such a system, such as using back-pressure
to prevent buffers from being overrun, or how to chunk stream data
to amortize communication overhead, is invariably a headache.

Instead, we would prefer to use stream fusion, which is a program
transformation that takes the implied dataflow network and produces
a simple sequential loop that does not require extra process-control
abstractions or unbounded buffering. Sadly, existing stream fusion
transformations cannot handle our example.

As observed by Kay [15], both pull-based and push-based fusion
have fundamental limitations. Pull-based systems such as short-cut
stream fusion [9] cannot handle cases where a particular stream or
intermediate result is used by multiple consumers. We refer to this
situation as a split — in the dataflow network of our example the
flow from input stream sIn1 is split into both the group and merge
consumers. Push-based systems such as foldr/build fusion [11] can-
not fuse our example either, because they do not support operators
with multiple inputs. We refer to this as a join — in our example
the merge operator expresses a join in the data-flow network. Some
systems support both pull and push: data flow inspired array fusion
using series expressions [20] allows both splits and joins but only for
a limited, predefined set of operators. More recent work on polarized
data flow fusion [22] is able to fuse our example, but requires the
program to be rewritten to use explicitly polarized stream types.

In this paper we present Machine Fusion, a new approach. Each
operator is expressed as a restricted, sequential imperative program
which pulls from input streams, and pushes to output streams. We
view each operator as a process in a concurrent process network.
Our fusion transform then sequentializes the concurrent process
network into a single process, by choosing a particular interleaving
of the operator code that requires no unbounded intermediate buffers.
When the fusion transform succeeds we know it has worked. There
is no need to inspect intermediate representations of the compiled
code to debug poor performance, which is a common problem in
systems based on general purpose program transformations [21].

In summary, we make the following contributions:

• a process calculus for infinite streaming programs (§2);
• a fusion algorithm, the first to support splits and joins (§4);
• benchmarks showing significant performance gains (§5);
• proof of soundness for the fusion algorithm in Coq (§6).

Our fusion transform for infinite stream programs also serves as
the basis for an array fusion system, using a natural extension to
finite streams. We discuss this extension in §5.1.
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2 PROCESSES AND MACHINES
A process in our system is a simple imperative program with a local
heap. A process pulls source values from an arbitrary number of
input streams and pushes result values to at least one output stream.
The process language is an intermediate representation we use when
fusing the overall dataflow network. When describing the fusion
transform we describe the control flow of the process as a state
machine, hence Machine Fusion.

A combinator is a template for a process which parameterizes
it over the particular input and output streams, as well as values of
configuration parameters such as the worker function used in a map
process. Each process implements a logical operator — so we use
“operator” when describing the values being computed, but “process”
and “machine” when referring to the implementation.

2.1 Grouping
The definition of the group combinator which detects groups of
successive identical elements in the input stream is given in Figure 1.
The process emits the first value pulled from the stream and every
value that is different from the last one that was pulled. For example,
when executed on the input stream [1,2,2,3], the process will
produce the output [1,2,3]. We include the concrete representation
and a diagram of the process when viewed as a state machine.

The group combinator has two parameters, sIn1 and sOut1,
which bind the input and output streams respectively. The nu-binders
(ν (f: Bool) (l: Nat)...) indicate that each time the group com-
binator is instantiated, fresh names must be given to f, l and so on,
that do not conflict with other instantiations. Overall, the f variable
tracks whether we are dealing with the first value from the stream, l
holds the last value pulled from the stream (or 0 if none have been
read yet), and v holds the current value pulled from the stream.

The body of the combinator is a record that defines the process.
The ins field defines the set of input streams and the outs field
the set of output streams. The heap field gives the initial values
of each of the local variables. The instrs field contains a set of
labeled instructions that define the program, while the label field
gives the label of the initial instruction. In this form, the output
stream is defined via a parameter, rather than being the result of the
combinator, as in the representation of uniquesUnion from §1.

The initial instruction (pull sIn1 v A1 []) pulls the next
element from the stream sIn1, writes it into the heap variable v
(value), then proceeds to the instruction at label A1. The empty list
[] after the target label A1 can be used to update heap variables, but
as we do not need to update anything yet we leave it empty.

Next, the instruction (case (f || (l /= v)) A2 [] A3 [])
checks whether predicate (f || (l /= v)) is true; if so it proceeds
to the instruction at label A2, otherwise it proceeds to A3. We use the
variable l (last) to track the last value read from the stream, and the
boolean f (first) to track whether this is the first element.

When the predicate is true, the instruction at label A2 executes
(push sOut1 v A3 [ l = v, f = F ]) which pushes the value v
to the output stream sOut1 and proceeds to the instruction at label
A3, once the variable l is set to v and f to F (False).

Finally, the instruction (drop sIn1 A0 []) signals that the cur-
rent element that was pulled from stream sIn1 is no longer required,
and goes back to the first instruction at A0.

2.2 Merging
The definition of the merge combinator, which merges two input
streams, is given in Figure 2. The combinator binds the two input
streams to sIn1 and sIn2, while the output stream is sOut2. The
two heap variables x1 and x2 store the last values read from each
input stream. The process starts by pulling from each of the input
streams. It then compares the two pulled values, and pushes the
smaller of the values to the output stream. The process then drops
the stream which yielded the the smaller value, then pulls from the
same stream so that it can perform the comparison again.

2.3 Fusion
Our fusion algorithm takes two processes and produces a new one
that computes the output of both. For example, suppose we need
a single process that produces the output of the first two lines of
our uniquesUnion example back in §1. The result will be a process
that computes the result of both group and merge as if they were
executed concurrently, where the first input stream of the merge
process is the same as the input stream of the group process. In our
informal description of the fusion algorithm we will instantiate the
parameters of each combinator with arguments of the same names.

2.3.1 Fusing Pulls. The algorithm proceeds by considering pairs
of states: one from each of the source process state machines to be
fused. Both the group machine and the merge machine pull from
the same stream as their initial instruction, so we have the situation
shown in the top of Figure 3. The group machine needs to transition
from label A0 to label A1, and the merge machine from B0 to B1. In
the result machine we produce three new instructions that transition
between four joint result states, F0 to F3. Each of the joint result
states represents a combination of two source states, one from each of
the source machines. For example, the first result state F0 represents
a combination of the group machine being in its initial state A0 and
the merge machine being in its own initial state B0.

We also associate each of the joint result states with a description
of whether each source machine has already pulled a value from
each of its input streams. For the F0 case at the top of Figure 3 we
have ((A0, {sIn1 = none}), (B0, {sIn1 = none, sIn2 = none})). The
result state F0 represents a combination of the two source states A0
and B0. As both A0 and B0 are the initial states of their respective
machines, those machines have not yet pulled any values from their
two input streams, so both ‘sIn1’ and ‘sIn2’ map to ‘none’.

From the result state F0, both of the source machines then need
to pull from stream sIn1, the group machine storing the value in
a variable v and the merge machine storing it in x1. In the result
machine this is managed by first storing the pulled value in a fresh,
shared buffer variable b1, and then using later instructions to copy
the value into the original variables v and x1. To perform the copies
we attach updates to a jump instruction, which otherwise transitions
between states without affecting any of the input or output streams.

Finally, note that in the result states F0 through F3, the state of the
input streams transitions from ‘none’, to ‘pending’ then to ‘have’.
The ‘none’ state means that we have not yet pulled a value from
the associated stream. The ‘pending’ state means we have pulled
a value into the stream buffer variable (b1 in this case). The ‘have’
state means that we have copied the pulled value from the stream
buffer variable into the local variable used by each machine.
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group
= λ (sIn1: Stream Nat) (sOut1: Stream Nat).

ν (f: Bool) (l: Nat) (v: Nat) (A0..A3: Label).

process
{ ins: { sIn1 }
, outs: { sOut1 }
, heap: { f = T, l = 0, v = 0 }
, label: A0
, instrs: { A0 = pull sIn1 v A1 []

, A1 = case (f || (l /= v)) A2 [] A3 []
, A2 = push sOut1 v A3 [ l = v, f = F ]
, A3 = drop sIn1 A0 [] } }

A0 A1

A2A3
{l = v, f = F}

pull sIn1 v

p-p

push sOut1 v

drop sIn1
where 
p = f  || (l /= v)

Figure 1: The group combinator

merge
= λ (sIn1: Stream Nat) (sIn2: Stream Nat) (sOut2: Stream Nat).

ν (x1: Nat) (x2: Nat) (B0..E2: Label).

process
{ ins: { sM1, sM2 }
, outs: { sM3 }
, heap: { x1 = 0, x2 = 0 }
, label: B0
, instrs: { B0 = pull sIn1 x1 B1 [] , B1 = pull sIn2 x2 C0 []

, C0 = case (x1 < x2) D0 [] E0 [] , D0 = push sOut2 x1 D1 []
, D1 = drop sIn1 D2 [] , D2 = pull sIn1 x1 C0 []
, E0 = push sOut2 x2 E1 [] , E1 = drop sIn2 E2 []
, E2 = pull sIn2 x2 C0 [] } }

B0 B1 C0

D0 D1 D2

E1E0 E2

pull sIn1 x1 pull sIn2 x2

push sOut2 x1 drop sIn1

pull sIn1 x1

pull sIn2 x1

push sOut2 x2 drop sIn2

p

-pwhere
p = x1 <= x2

Figure 2: The merge combinator

2.3.2 Fusing Cases. Once the result machine has arrived at the
joint state F3, this is equivalent to the two source machines arriving
in states A1 and B1 respectively. The lower half of Figure 3 shows
the next few transitions of the source machines. From state A1,
the group machine needs to perform a case branch to determine
whether to push the current value it has from its input stream sIn1
to output stream sOut1, or to just pull the next value from its input.
From state B1, the merge machine needs to pull a value from its
second input stream sIn2. In the result machine, F3 performs the
case analysis from A1, moving to either F4 or F5, corresponding to
A2 and A3 respectively. From state F4, the push at A2 is executed and
moves to F5, corresponding to A3. Finally, at F5 the merge machine
pulls from sIn2, moving from F5 to F6, corresponding to B1 and C0
respectively. As the stream sIn2 is only pulled from by the merge
machine, no coordination is required between the merge and group
machines for this pull.

2.4 Fused Result
Figure 4 shows the final result of fusing group and merge together.
There are similar rules for handling the other combinations of in-
structions, but we defer the details to §4. The result process has two
input streams, sIn1 and sIn2, and two output streams: sOut1 from
group, and sOut2 from merge. The shared input sIn1 is pulled by
merge instructions at two places, and since both of these need to
agree with when group pulls, the group instructions are duplicated
at F3-F5 and F13-F15. The first set of instructions could be simplified
by constant propagation to a single push, as f is initially true.

To complete the implementation of our example from §1 we
would now fuse this result process with a process from the final line
of the example (also a group). Note that although the result process
has a single shared heap, the heap bindings from each fused process
are guaranteed not to interfere, as when we instantiate combinators
to create source processes we introduce fresh names.
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2.5 Breaking It Down
We started with a pure functional program in §1, reimagined it as a
dataflow graph, then interleaved imperative code that implemented
two of the operators in that dataflow graph. We needed to break
down the definition of each operator into imperative statements so
that we could interleave their execution appropriately. We do this
because the standard, single-threaded evaluation semantics of func-
tional programs does not allow us to evaluate stream programs that
contain both splits and joins in a space efficient way. Returning to the
definition of uniquesUnion from §1, we cannot simply execute the
group operator on its entire input sIn1 before executing the merge
operator, as that would require us to buffer all data read from sIn1.
Instead, during fusion we perform the job of a concurrent scheduler
at compile time. In the result process the flow of control alternates
between the instructions for both the group and merge operators, but
as the instructions are interleaved directly there is no overhead due
to context switching — as there would be in a standard concurrent
implementation using multiple threads.

The general approach of converting a pure functional program
to a dataflow graph, then interleaving imperative statements that
implement each operator was also used in prior work on Flow Fu-
sion [20]. However, in contrast to Flow Fusion and similar systems,
with Machine Fusion we do not need to organize statements into
a fixed loop anatomy — we simply merge them as they are. This
allows us to implement a wider range of operators, including ones
with nested loops that work on segmented streams.

Note that relying on lazy evaluation for uniquesUnion does not
eliminate the need for unbounded buffering. Suppose we converted
each of the streams to lazy lists, and used definitions of group and
merge that worked over these lists. As uniquesUnion returns a pair
of results, there is nothing preventing a consumer from demanding
the first list (sUnique) in its entirety before demanding any of the
elements from the second list (sUnion). If this were to happen then
the runtime implementation would need to retain all elements of
sIn1 before demanding any of sIn2, causing a space leak. Lazy
evaluation is pull only meaning that evaluation is driven by the
consumer. The space efficiency of our fused program relies critically
on the fact that processes can also push their result values directly to
their consumers, and that the consumers cannot defer the handling
of these values.

3 PROCESS DEFINITIONS
The formal grammar for process definitions is given in Figure 5.
Variables, Channels and Labels are specified by unique names. We
refer to the endpoint of a stream as a channel. A particular stream
may flow into the input channels of several different processes, but
can only be produced by a single output channel. For values and
expressions we use an untyped lambda calculus with a few primitives
chosen to facilitate the examples. The ‘||’ operator is boolean-or, ‘+’
addition, ‘/=’ not-equal, and ‘<’ less-than.

A Process is a record with five fields: the ins field specifies the
input channels; the outs field the output channels; the heap field
the process-local heap; the label field the label of the instruction
currently being executed, and the instrs a map of labels to instruc-
tions. We use the same record when specifying both the definition of
a particular process, as well as when giving the evaluation semantics.

When specifying a process the label field gives the entry-point
to the process code, though during evaluation it is the label of the
instruction currently being executed. Likewise, when specifying a
process we usually only list channel names in the ins field, though
during evaluation they are also paired with their current InputState.
If an InputState is not specified we assume it is ‘none’. A network is
a set of processes that are able to communicate with each other.

In the grammar of Figure 5 the InputState has three options:
none, which means no value is currently stored in the associated
stream buffer variable, (pending Value) which gives the current
value in the stream buffer variable and indicates that it has not yet
been copied into a process-local variable, and have which means
the pending value has been copied into a process-local variable.
The Value attached to the pending state is used when specifying
the evaluation semantics of processes. When performing the fusion
transform the Value itself will not be known, but we can still reason
statically that a process must be in the pending state. When defining
the fusion transform in §4 we will use a version of InputState with
only this statically known information.

The instrs field of the Process maps labels to instructions. The
possible instructions are: pull, which pulls the next value from a
channel into a given heap variable; push, which pushes the value
of an expression to an output channel; drop which indicates that
the current value pulled from a channel is no longer needed; case
which branches based on the result of a boolean expression, and
jump which causes control to move to a new instruction.

Instructions include a Next field containing the label of the next
instruction to execute, as well as a list of Variable×Exp bindings
used to update the heap. The list of update bindings is attached
directly to instructions to make the fusion algorithm easier to specify,
in contrast to a presentation with a separate update instruction.

When lowering process code to a target language, such as C,
LLVM, or some sort of assembly code, we can safely convert drop
to plain jump instructions. The drop instructions are used to con-
trol how processes should be synchronized, but do not affect the
execution of a single process. We discuss drops further in §5.3.

3.1 Execution
The dynamic execution of a process network consists of:

(1) Injection of a single value from a stream into a process, or
a network. Each individual process only needs to accept an
injected value when it is ready for it, and injection into a
network succeeds only when they all processes accept it.

(2) Advancing a single process from one state to another. Ad-
vancing a network succeeds when any of the processes in
the network can advance.

(3) Feeding outputs of some processes to the inputs of others.
Feeding alternates between Injecting and Advancing. When
a process pushes a value to an output channel we attempt
to inject this value into all processes that have that same
channel as an input. If they all accept it, we then advance
their programs as far as they will go, which may cause more
values to be pushed to output channels, and so on.

Execution of a network is non-deterministic. At any moment
several processes may be able to take a step, while others are blocked.
As with Kahn processes [14], pulling from a channel is blocking,

4
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B0

A0 F0

pull sIn1 x1

pull sIn1 v
A1

B1

F1 F2 F3
pull sIn1 b1 jump

{v = b1} {x1 = b1}

jump

where
  F0 = ((A0, {sIn1 = none}),      (B0, {sIn1 = none,       sIn2 = none}))
  F1 = ((A0, {sIn1 = pending}), (B0, {sIn1 = pending,  sIn2 = none}))
  F2 = ((A1, {sIn1 = have}),      (B0, {sIn1 = pending,  sIn2 = none}))
  F3 = ((A1, {sIn1 = have}),      (B1, {sIn1 = have,       sIn2 = none}))

fuse

fuse

B1
pull sIn2 v2

C0

where
    p = f || (l /= v)
  F3 = ((A1,{sIn1 = have}),  (B1,{sIn1 = have, sOut2 = none}))
  F4 = ((A2,{sIn1 = have}),  (B1,{sIn1 = have, sOut2 = none}))
  F5 = ((A3,{sIn1 = have}),  (B1,{sIn1 = have, sOut2 = none}))
  F6 = ((A3,{sIn1 = have}),  (C0,{sIn1 = have, sOut2 = have}))

A1

A2A3
{l = v, f = F}

p-p

push sOut1 v

F6

pull sIn2 v2
fuse

fuse

F3

F4F5 {l = v, f = F}

p-p

push sOut1 v

Figure 3: Fusing pull (top) and case (bottom) instructions

process
{ ins: { sIn1, sIn2 }
, outs: { sOut1, sOut2 }
, heap: { f = T, l = 0, v = 0, x1 = 0, x2 = 0, b1 = 0 }
, label: F0

, instrs:
{ F0 = pull sIn1 b1 F1 [ ] F0 = ((A0,{sIn1 = none}), (B0, {sIn1 = none, sIn2 = none}))

, F1 = jump F2 [ v = b1 ] F1 = ((A0,{sIn1 = pending}), (B0, {sIn1 = pending, sIn2 = none}))

, F2 = jump F3 [ x1 = b1 ] F2 = ((A1,{sIn1 = have}), (B0, {sIn1 = pending, sIn2 = none}))

, F3 = case (f || (l /= v)) F4 [ ] F5 [ ] F3 = ((A1,{sIn1 = have}), (B1, {sIn1 = have, sIn2 = none}))

, F4 = push sOut1 v F5 [ l = v, f = F ] F4 = ((A2,{sIn1 = have}), (B1, {sIn1 = have, sIn2 = none}))

, F5 = jump F6 [ ] F5 = ((A3,{sIn1 = have}), (B1, {sIn1 = have, sIn2 = none}))

, F6 = pull sIn2 x2 F7 [ ] F6 = ((A0,{sIn1 = none}), (B1, {sIn1 = have, sIn2 = none}))

, F7 = case (x1 < x2) F8 [ ] F16 [ ] F7 = ((A0,{sIn1 = none}), (C0, {sIn1 = have, sIn2 = have}))

, F8 = push sOut2 x1 F9 [ ] F8 = ((A0,{sIn1 = none}), (D0, {sIn1 = have, sIn2 = have}))

, F9 = drop sIn1 F10 [ ] F9 = ((A0,{sIn1 = none}), (D1, {sIn1 = none, sIn2 = have}))

, F10 = pull sIn1 b1 F11 [ ] F10 = ((A0,{sIn1 = none}), (D2, {sIn1 = none, sIn2 = have}))

, F11 = jump F12 [ v = b1 ] F11 = ((A0,{sIn1 = pending}), (D2, {sIn1 = pending, sIn2 = have}))

, F12 = jump F13 [ x1 = b1 ] F12 = ((A1,{sIn1 = have}), (D2, {sIn1 = pending, sIn2 = have}))

, F13 = case (f || (l /= v)) F14 [ ] F15 [ ] F13 = ((A1,{sIn1 = have}), (C0, {sIn1 = have, sIn2 = have}))

, F14 = push sOut1 v F15 [ l = v, f = F ] F14 = ((A2,{sIn1 = have}), (C0, {sIn1 = have, sIn2 = have}))

, F15 = jump F7 [ ] F15 = ((A3,{sIn1 = have}), (C0, {sIn1 = have, sIn2 = have}))

, F16 = push sOut2 x2 F17 [ ] F16 = ((A0,{sIn1 = none}), (E0, {sIn1 = have, sIn2 = have}))

, F17 = drop sIn2 F18 [ ] F17 = ((A0,{sIn1 = none}), (E1, {sIn1 = have, sIn2 = have}))

, F18 = pull sIn2 F7 [ ] F18 = ((A0,{sIn1 = none}), (E2, {sIn1 = have, sIn2 = none}))

} }

Figure 4: Fusion of group and merge, along with shared instructions
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Exp, e ::= x | v | e e
| (e || e) | e+ e | e /= e | e < e

Value, v ::= N | B | (λx. e)
Heap, bs ::= · | bs, x = v
Updates, us ::= · | us, x = e

Process, p ::= process
ins: (Channel 7→ InputState)
outs: {Channel}
heap: Heap
label: Label
instrs: (Label 7→ Instruction)

InputState ::= none | pending Value | have

Variable, x → (value variable)
Channel, c → (channel name)
Label, l → (label name)
ChannelStates = (Channel 7→ InputState)
Action, a ::= · | push Channel Value

Instruction ::= pull Channel Variable Next
| push Channel Exp Next
| drop Channel Next
| case Exp Next Next
| jump Next

Next = Label × Updates

Figure 5: Process definitions

which enables the overall sequence of values on each output channel
to be deterministic. Unlike Kahn processes, pushing to a channel can
also block. Each consumer has a single element buffer, and pushing
only succeeds when that buffer is empty.

Importantly, it is the order in which values are pushed to each
particular output channel which is deterministic, whereas the order
in which different processes execute their instructions is not. When
we fuse two processes we choose one particular instruction ordering
that enables the network to advance without requiring unbounded
buffering. The single ordering is chosen by heuristically deciding
which pair of states to merge during fusion, and is discussed in §3.2.

Each channel may be pushed to by a single process only, so in a
sense each output channel is owned by a single process. The only
intra-process communication is via channels and streams. Our model
is “pure data flow” as there are no side-channels between processes
— in contrast to “impure data flow” systems such as StreamIt [29].

3.1.1 Injection. Figure 6 gives the rules for injecting values into
processes. Injection is a meta-level operation, in contrast to pull and
push which are instructions in the object language. The statement
(p; inject v c ⇒ p′) reads “given process p, injecting value v
into channel c yields an updated process p′”. The injects form is
similar, operating on a process network.

Rule (InjectValue) injects a single value into a single process.
The value is stored as a (pending v) binding in the InputState of the
associated channel of the process. The InputState acts as a single
element buffer, and must be empty (none) for injection to succeed.

Rule (InjectIgnore) allows processes that do not use a particular
named channel to ignore values injected into that channel.

Rule (InjectMany) attempts to inject a single value into a network.
We use the single process judgment form to inject the value into all
processes, which must succeed for all of them.

3.1.2 Advancing. Figure 7 gives the rules for advancing a single
process. The statement (i; is; bs a

=⇒ l; is′; us′) reads “instruction i,
given channel states is and the heap bindings bs, passes control to
instruction at label l and yields new channel states is′, heap update
expressions us′, and performs an output action a.” An output action
a is an optional message of the form (push Channel Value), which
encodes the value a process pushes to one of its output channels. We
write · for an empty action.

Rule (Pull) takes the pending value v from the channel state and
produces a heap update to copy this value into the variable x in the
pull instruction. We use the syntax us,x = v to mean that the list
of updates us is extended with the new binding x = v. In the result
channel states, the state of the channel c that was pulled from is set
to have, to indicate the value has been copied into the local variable.

Rule (Push) evaluates the expression e under heap bindings bs to
a value v, and produces a corresponding action which carries this
value. The judgment (bs ⊢ e ⇓ v) expresses standard untyped lambda
calculus reduction using the heap bs for the values of free variables.
As this evaluation is completely standard we omit it to save space.

Rule (Drop) changes the input channel state from have to none.
A drop instruction can only be executed after pull has set the input
channel state to have.

Rule (Jump) produces a new label and associated update expres-
sions. Rules (CaseT) and (CaseF) evaluate the scrutinee e and emit
the appropriate label.

The statement p a
=⇒ p′ reads “process p advances to new process

p′, yielding action a”. Rule (Advance) advances a single process.
We look up the current instruction for the process’ label and pass it,
along with the channel states and heap, to the above single instruction
judgment. The update expressions us from the single instruction
judgment are reduced to values before updating the heap. We use
(us◁ bs) to replace bindings in us with new ones from bs. As the
update expressions are pure, the evaluation can be done in any order.

3.1.3 Feeding. Figure 8 gives the rules for collecting output
actions and feeding the contained values to other processes. The first
set of rules concerns feeding values to other processes within the
same network, while the second exchanges input and output values
with the environment the network is running in.

The statement ps a
=⇒ ps′ reads “the network ps advances to the

network ps′ yielding output action a”.
Rule (ProcessInternal) allows an arbitrary process in the network

to advance to a new state at any time, provided it does not yield an
output action. This allows processes to perform internal computation.

Rule (ProcessPush) allows an arbitrary process in the network to
advance to a new state while yielding an output action (push c v).
For this to succeed it must be possible to inject the output value v
into all processes that have channel c as one of their inputs.
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Process; inject Value Channel ⇒ Process {Process}; injects Value Channel ⇒ {Process}

p[ins][c] = none
p; inject v c ⇒ p [ins 7→ (p[ins][c 7→ pending v])]

(InjectValue)

c < p[ins]
p; inject v c ⇒ p

(InjectIgnore)
{ pi; inject v c ⇒ p′i }i

{pi}i; injects v c ⇒ {p′i}i (InjectMany)

Figure 6: Injection of values into input channels

Instruction; ChannelStates; Heap Action
====⇒ Label; ChannelStates; Updates

is[c] = pending v

pull c x (l,us); is; bs ·
=⇒ l; is[c 7→ have]; (us,x = v)

(Pull)
bs ⊢ e ⇓ v

push c e (l,us); is; bs
push c v
======⇒ l; is; us

(Push)

is[c] = have

drop c (l,us); is; bs ·
=⇒ l; is[c 7→ none]; us

(Drop)
jump (l,us); is; bs ·

=⇒ l; is; us
(Jump)

bs ⊢ e ⇓ True

case e (lt ,ust ) (l f ,us f ); is; bs ·
=⇒ lt ; is; ust

(CaseT)
bs ⊢ e ⇓ False

case e (lt ,ust ) (l f ,us f ); is; bs ·
=⇒ l f ; is; us f

(CaseF)

Process Action
====⇒ Process

p[instrs][p[label]]; p[ins]; p[heap] a
=⇒ l; is; us p[heap] ⊢ us ⇓ bs

p a
=⇒ p [label 7→ l, heap 7→ (p[heap]◁bs), ins 7→ is]

(Advance)

Figure 7: Advancing processes

{Process} Action
====⇒ {Process}

pi
·
=⇒ p′i

{p0 . . . pi . . . pn}
·
=⇒ {p0 . . . p′i . . . pn}

(ProcessesInternal)
pi

push c v
======⇒ p′i ∀ j | j , i. p j; inject c v ⇒ p′j

{p0 . . . pi . . . pn}
push c v
======⇒ {p′0 . . . p′i . . . p′n}

(ProcessesPush)

(Channel 7→Value) ; {Process} ⇒ (Channel 7→Value) ; {Process}

ps ·
=⇒ ps′

cvs; ps ⇒ cvs; ps′
(FeedInternal)

ps
push c v
======⇒ ps′

cvs; ps ⇒ cvs[c 7→ (cvs[c] ++ v)]; ps′
(FeedPush)

(∀p ∈ ps. c < p[outs]) ps; injects c v ⇒ ps′

cvs[c 7→ ([v] ++ vs)]; ps ⇒ cvs[c 7→ vs ]; ps′
(FeedExternal)

Figure 8: Feeding Process Networks

The statement cvs; ps ⇒ cvs′; ps′ reads “with channel values
cvs, network ps takes a step and produces new channel values cvs′

and network ps′”. The channel values cvs map channel names to a
list of values. For input channels of the overall network, we initialize
the map to contain a list of input values for each channel. For output
channels of the overall network, values pushed to those channels are
also collected in the same channel map. In a concrete implementation
the input and output values would be transported over some IO
device, but for the semantics we describe the abstract behavior only.

Rule (FeedInternal) allows the network to perform local computa-
tion in the context of the channel values.

Rule (FeedPush) collects an output action (push c v) produced by
a network and appends the value v to the list corresponding to the
output channel c.

Rule (FeedExternal) injects values from the external environment.
This rule also has the side condition that values cannot be injected
from the environment into output channels that are already owned
by some process. This constraint is required for correctness proofs,
but can be ensured by construction in a concrete implementation.
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3.2 Non-deterministic Execution Order
The execution rules of Figure 8 are non-deterministic in several
ways. Rule (ProcessInternal) allows any process to perform internal
computation at any time, without synchronizing with other processes
in the network; (ProcessPush) allows any process to perform a push
action at any time, provided all other processes in the network are
ready to accept the pushed value; (FeedExternal) also allows new
values to be injected from the environment, provided all processes
that use the channel are ready to accept the value.

In the semantics, allowing the execution order of processes to
be non-deterministic is critical, as it defines a search space where
we might find an order that does not require unbounded buffering.
For a direct implementation of concurrent processes using message
passing and operating system threads, an actual, working, execution
order would be discovered dynamically at runtime. In contrast, the
role of our fusion system is to construct one of these working orders
statically. In the fused result process, the instructions will be sched-
uled so that they run in one of the orders that would have arisen if
the network were executed dynamically. Fusion also eliminates the
need to pass messages between processes — once they are fused we
can just copy values between heap locations.

4 FUSION
Our core fusion algorithm constructs a static execution schedule for
a single pair of processes. To fuse a whole process network we fuse
successive pairs of processes until only one remains.

Figure 9 defines some auxiliary grammar used during fusion. We
extend the Label grammar with a new alternative, LabelF×LabelF
for the labels in a fused result process. Each LabelF consists of a
Label from a source process, paired with a map from Channel to
the statically known part of that channel’s current InputState. When
fusing a whole network, as we fuse pairs of individual processes the
labels in the result collect more and more information. Each label
of the final, completely fused process encodes the joint state that all
the original source processes would be in at that point.

We also extend the existing Variable grammar with a (chan c)
form which represents the buffer variable associated with channel c.
We only need one buffer variable for each channel, and naming
them like this saves us from inventing fresh names in the definition
of the fusion rules. We used a fresh name back in §2.3.1 to avoid
introducing a new mechanism at that point in the discussion.

Still in Figure 9, ChannelType2 classifies how channels are used,
and possibly shared, between two processes. Type in2 indicates that
the two processes pull from the same channel, so these actions must
be coordinated. Type in1 indicates that only a single process pulls
from the channel. Type in1out1 indicates that one process pushes to
the channel and the other pulls. Type out1 indicates that the channel
is pushed to by a single process. Each output channel is uniquely
owned and cannot be pushed to by more than one process.

Figure 10 defines function fusePair that fuses a pair of processes,
constructing a result process that does the job of both. We start
with a joint label l0 formed from the initial labels of the two source
processes. We then use tryStepPair to statically choose which of the
two processes to advance, and hence which instruction to execute
next. The possible destination labels of that instruction (computed
with outlabels from Figure 13) define new joint labels and reachable

Label ::= . . . | LabelF × LabelF | . . .
LabelF = Label × (Channel 7→ InputStateF)
InputStateF ::= noneF | pendingF | haveF
Variable ::= . . . | chan Channel | . . .
ChannelType2 ::= in2 | in1 | in1out1 | out1

Figure 9: Fusion type definitions.

fusePair : Process→ Process→Maybe Process
fusePair p q
| Just is← go {} l0
= Just (process

ins: {c | c = t ∈ cs, t ∈ {in1,in2}}
outs: {c | c = t ∈ cs, t ∈ {in1out1,out1}}
heap: p[heap] ∪ q[heap]
label: l0
instrs: is)

| otherwise = Nothing
where
cs = channels p q
l0 =

(
(p[label], {c = noneF | c ∈ p[ins]})

, (q[label], {c = noneF | c ∈ q[ins]})
)

go bs (lp, lq)
| (lp, lq) ∈ bs
= Just bs
| Just b← tryStepPair cs lp p[instrs][lp] lq q[instrs][lq]
= foldM go (bs ∪ {(lp, lq) = b}) (outlabels b)
| otherwise = Nothing

Figure 10: Fusion of pairs of processes

tryStepPair : (Channel 7→ ChannelType2)
→ LabelF→ Instruction→ LabelF→ Instruction
→ Maybe Instruction

tryStepPair cs lp ip lq iq =
match (tryStep cs lp ip lq, tryStep cs lq iq lp) with
(Just i′p, Just i′q)
| jump _← i′p → Just i′p (PreferJump1)
| jump _← i′q → Just (swaplabels i′q) (PreferJump2)
| pull _ _ _← i′q → Just i′p (DeferPull1)
| pull _ _ _← i′p → Just (swaplabels i′q) (DeferPull2)
(Just i′p, _) → Just i′p (Run1)
(_, Just i′q) → Just (swaplabels i′q) (Run2)
(Nothing, Nothing)→ Nothing (Deadlock)

Figure 11: Fusion step coordination for a pair of processes.

states. As we discover reachable states we add them to a map bs of
joint label to the corresponding instruction, and repeat the process
to a fixpoint where no new states can be discovered.

Figure 11 defines function tryStepPair which decides which pro-
cess to advance. It starts by calling tryStep for both processes. If
both can advance, we use heuristics to decide which one to run first.
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Clauses (PreferJump1) and (PreferJump2) prioritize processes
that can perform a jump. This helps collect jump instructions together
so they are easier for post-fusion optimization to handle (§5.3). The
instruction for the second process was computed by calling tryStep
with the label arguments swapped, so in (PreferJump2) we need to
swap the labels back with swaplabels (from Figure 13).

Similarly, clauses (DeferPull1) and (DeferPull2) defer pull in-
structions: if one of the instructions is a pull, we advance the other
one. We do this because pull instructions may block, while other
instructions are more likely to produce immediate results.

Clauses (Run1) and (Run2) apply when the above heuristics do
not apply, or only one of the processes can advance.

Clause (Deadlock) applies when neither process can advance, in
which case the processes cannot be fused together and fusion fails.

Figure 12 defines function tryStep which schedules a single in-
struction. This function takes the map of channel types, along with
the current label and associated instruction of the first (left) process,
and the current label of the other (right) process.

Clause (LocalJump) applies when the left process wants to jump.
In this case, the result instruction simply performs the corresponding
jump, leaving the right process where it is.

Clause (LocalCase) is similar, except there are two Next labels.
Clause (LocalPush) applies when the left process wants to push to

a non-shared output channel. In this case the push can be performed
directly, with no additional coordination required.

Clause (SharedPush) applies when the left process wants to push
to a shared channel. Pushing to a shared channel requires the down-
stream process to be ready to accept the value at the same time.
We encode this constraint by requiring the static input state of the
downstream channel to be noneF . When this is satisfied, the result
instruction stores the pushed value in the stream buffer variable
(chan c) and sets the static input state to pendingF , which indicates
that the new value is now available.

Still in Figure 12, clause (LocalPull) applies when the left process
wants to pull from a local channel, which requires no coordination.

Clause (SharedPull) applies when the left process wants to pull
from a shared channel that the other process either pulls from or
pushes to. We know that there is already a value in the stream buffer
variable, because the state for that channel is pendingF . The result
instruction copies the value from the stream buffer variable into a
variable specific to the left source process, and the corresponding
haveF channel state in the result label records that it has done so.

Clause (SharedPullInject) applies when the left process wants to
pull from a shared channel that both processes pull from, and neither
already has a value. The result instruction is a pull that loads the
stream buffer variable.

Clause (LocalDrop) applies when the left process wants to drop
the current value that it read from an unshared input channel, which
requires no coordination.

Clause (ConnectedDrop) applies when the left process wants to
drop the current value that it received from an upstream process.
As the value will have been sent via a heap variable instead of a
still extant channel, the result instruction just performs a jump while
updating the static channel state.

Clauses (SharedDropOne) and (SharedDropBoth) apply when the
left process wants to drop from a channel shared by both processes.

In (SharedDropOne) the channel states reveal that the other process
is still using the value. In this case the result is a jump updating the
channel state to note that the left process has dropped. In (Shared-
DropBoth) the channel states reveal that the other process no longer
needs the value. In this case the result is a real drop, because we are
sure that neither process requires the value any longer.

Clause (Blocked) returns Nothing when no other clauses apply,
meaning that this process is waiting for the other process to advance.

4.1 Fusibility
When we fuse a pair of processes we commit to a particular inter-
leaving of instructions from each process. When we have at least
three processes to fuse, the choice of which two to handle first can
determine whether this fused result can then be fused with the third
process. Consider the following example, where alt2 pulls two ele-
ments from its first input stream, then two from its second, before
pushing all four to its output.

alternates : S Nat -> S Nat -> S Nat -> S (Nat, Nat)
alternates sInA sInB sInC
= let s1 = alt2 sInA sInB

s2 = alt2 sInB sInC
sOut = zip s1 s2

in sOut

If we fuse the two alt2 processes together first, then try to fuse
this result process with the downstream zip process, the final fusion
transform fails. This happens because the first fusion transform
commits to a sequential instruction interleaving where two output
values must be pushed to stream s1 first, before pushing values to
s2. On the other hand, zip needs to pull a single value from each of
its inputs alternately.

Dynamically, if we were to execute the first fused result process,
and the downstream zip process concurrently, then the execution
would deadlock. Statically, when we try to fuse the result process
with the downstream zip process the deadlock is discovered and
fusion fails. Deadlock happens when neither process can advance to
the next instruction, and in the fusion algorithm this manifests as the
failure of the tryStepPair function from Figure 11. The tryStepPair
function determines which instruction from either process to execute
next, and when execution is deadlocked there are none. Fusibility is
an under-approximation for deadlock freedom of the network.

In practice, the likelihood of fusion succeeding depends on the
particular dataflow network. For fusion of pipelines of standard com-
binators such as map, fold, filter, scan and so on, fusion always
succeeds. The process implementations of each of these combinators
only pull one element at a time from their source streams, before
pushing the result to the output stream, so there is no possibility of
deadlock. Deadlock can only happen when multiple streams fan-in
to a process with multiple inputs, such as with merge.

When the dataflow network has a single output stream then we
use the method of starting from the process closest to the output
stream, walking towards the input streams, and fusing in successive
processes as they occur. This allows the interleaving of the inter-
mediate fused process to be dominated by the consumers, rather
than producers, as consumers are more likely to have multiple input
channels which need to be synchronized. In the worst case the fall
back approach is to try all possible orderings of processes to fuse.
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tryStep : (Channel 7→ ChannelType2)→ LabelF→ Instruction→ LabelF→Maybe Instruction
tryStep cs (lp,sp) ip (lq,sq) = match ip with

jump (l′,u′) → Just (jump
(
(l′, sp), (lq, sq), u′

)
) (LocalJump)

case e (l′t ,u
′
t ) (l

′
f ,u
′
f ) → Just (case e

(
(l′t , sp), (lq, sq), u′t

) (
(l′f , sp), (lq, sq), u′f

)
) (LocalCase)

push c e (l′,u′)
| cs[c] = out1 → Just (push c e

(
(l′, sp), (lq, sq), u′

)
) (LocalPush)

| cs[c] = in1out1 ∧ sq[c] = noneF → Just (push c e
(
(l′, sp), (lq, sq[c 7→ pendingF ]), u′[chan c 7→ e]

)
) (SharedPush)

pull c x (l′,u′)
| cs[c] = in1 → Just (pull c x

(
(l′, sp), (lq, sq), u′

)
) (LocalPull)

| (cs[c] = in2∨ cs[c] = in1out1) ∧ sp[c] = pendingF
→ Just (jump

(
(l′, sp[c 7→ haveF ]), (lq, sq), u′[x 7→ chan c]

)
) (SharedPull)

| cs[c] = in2 ∧ sp[c] = noneF ∧ sq[c] = noneF
→ Just (pull c (chan c)

(
(lp, sp[c 7→ pendingF ]), (lq, sq[c 7→ pendingF ]), []

)
) (SharedPullInject)

drop c (l′,u′)
| cs[c] = in1 → Just (drop c

(
(l′, sp), (lq, sq), u′

)
) (LocalDrop)

| cs[c] = in1out1 → Just (jump
(
(l′, sp[c 7→ noneF ]), (lq, sq), u′

)
) (ConnectedDrop)

| cs[c] = in2 ∧ (sq[c] = haveF ∨ sq[c] = pendingF ) → Just (jump
(
(l′, sp[c 7→ noneF ]), (lq, sq), u′

)
) (SharedDropOne)

| cs[c] = in2 ∧ sq[c] = noneF → Just (drop c
(
(l′, sp[c 7→ noneF ]), (lq, sq), u′

)
) (SharedDropBoth)

_ | otherwise → Nothing (Blocked)

Figure 12: Fusion step for a single process of the pair.

channels : Process→ Process→ (Channel 7→ ChannelType2)
channels p q = {c = in2 | c ∈ (ins p ∩ ins q)}

∪ {c = in1 | c ∈ (ins p ∪ ins q) ∧ c < (outs p ∪ outs q)}
∪ {c = in1out1 | c ∈ (ins p ∪ ins q) ∧ c ∈ (outs p ∪ outs q)}
∪ {c = out1 | c < (ins p ∪ ins q) ∧ c ∈ (outs p ∪ outs q)}

outlabels : Instruction→{Label}
outlabels (pull c x (l,u)) = {l}
outlabels (drop c (l,u)) = {l}
outlabels (push c e (l,u)) = {l}
outlabels (case e (l,u) (l′,u′)) = {l, l′}
outlabels (jump (l,u)) = {l}

swaplabels : Instruction→ Instruction
swaplabels (pull c x ((l1, l2),u)) = pull c x ((l2, l1),u)
swaplabels (drop c ((l1, l2),u)) = drop c ((l2, l1),u)
swaplabels (push c e ((l1, l2),u)) = push c e ((l2, l1),u)
swaplabels (case e ((l1, l2),u) ((l′1, l

′
2),u

′)) = case e ((l2, l1),u) ((l′2, l
′
1),u

′)
swaplabels (jump ((l1, l2),u)) = jump ((l2, l1),u)

Figure 13: Utility functions

5 IMPLEMENTATION
Stream fusion is ultimately performed for practical reasons: we want
the fused result program to run faster than the original unfused
program.

5.1 Finite streams
The processes we have seen so far deal with infinite streams, but in
practice most streams are finite. Certain combinators such as fold
and append only make sense on finite streams, and others like take
produce inherently finite output. We have focussed on the infinite
stream version as it is simpler to explain and prove, but supporting
finite streams does not require substantial conceptual changes.

Unlike infinite streams, pulling from a finite stream can fail, mean-
ing the stream is finished. We therefore modify the pull instruction
to have two output labels: one to execute when a value is pulled,
and the other to execute when the stream is finished. On the pushing

end, we also need some way of finishing streams, so we add a new
instruction to close an output stream.

During evaluation we need some way of knowing whether a
stream is closed, which can be added as an extra constructor in the
InputState type. The same constructor is added to the static input
state used by fusion. In this way, for any changes made to evaluation,
the analogous static change must be made in the fusion transform.

It is also possible to encode finite streams as infinite streams
with an explicit end-of-stream marker (EOF) and case statements.
However, this requires the fusion transform to reason about case
statements’ predicates. By making the structure of finite streams
explicit and constraining how processes use finite streams, it is not
necessary to rely on heuristics for deciding equality of predicates.

This finite stream extension is described in more detail in the
appendix of the extended version of this paper, which is available at
http://cse.unsw.edu.au/~amosr/papers/merges.pdf.
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5.2 Benchmarks
We have implemented this system using Template Haskell in a library
called folderol1. To show practical examples, we use the finite
stream extension mentioned in §5.1. We present three benchmarks:
two file-based benchmarks, and one array algorithm.

For the file benchmarks, we compare against three Haskell stream-
ing libraries: ‘Conduit’, ‘Pipes’, and ‘Streaming’. These streaming
libraries are pull-based, and do not naturally support multiple out-
puts: the split in the dataflow graph must be hand-fused, or somehow
rewritten as a straight-line computation. These libraries also have a
monadic interface, which allows the structure of the dataflow graph
to depend on the values. This expressiveness has a price: if the
dataflow graph can change dynamically, we cannot statically fuse it.

The first file benchmark simply appends two files while counting
the lines. In Pipes and Conduit, counting the lines is implemented
as a pipe which counts each line before passing it along. The first
group in Figure 14 shows the runtimes for appending 2MB of data.

The second file benchmark takes a file and partitions it into two
files: one with even-length lines, and one with odd-length lines. The
output lines are also counted. Even with partial hand-fusion because
of the multiple outputs, the Pipes and Conduit programs are slower
than ours, as well as losing the abstraction benefits from using a high-
level library. The ‘Streaming’ library allows streams to be shared in
a fairly straightforward way and does not require hand-fusion, but is
also the slowest in this benchmark. The second group in Figure 14
shows the runtimes for partitioning a 1MB file.

Quickhull is a divide-and-conquer spatial algorithm to find the
smallest convex hull containing all points. At its core is an operation
called ‘filterMax’ which takes a line and an array of points, and finds
the farthest point above the line, as well as all points above the line.

Here we also compare against a Data.Vector program, which
uses shortcut fusion. The shortcut fusion system cannot fuse both
operations into a single loop, and both operations must recompute
the distances between the line and each point. As before, the Conduit
and Pipes programs must be partially hand-fused. The third group in
Figure 14 shows the runtimes for Quickhull over 40MB of data, or
half a million points, while the final group uses more data (120MB)
to compare directly against Data.Vector.

5.3 Optimisation and Drop Instructions
After we have fused two processes together, it may be possible
to simplify the result before fusing in a third. Consider the result
of fusing group and merge which we saw back in Figure 4. At
labels F1 and F2 are two consecutive jump instructions. The update
expressions attached to these instructions are also non-interfering,
which means we can safely combine these instructions into a single
jump. In general, we prefer to have jump instructions from separate
processes scheduled into consecutive groups, rather than spread
out through the result code. The (PreferJump) clauses of Figure 11
implement a heuristic that causes jump instructions to be scheduled
before all others, so they tend to end up in these groups.

Other jump instructions like the one at F5 have no associated
update expressions, and thus can be eliminated completely. Another
simple optimization is to perform constant propagation, which in
this case would allow us to eliminate the first case instruction.

1https://github.com/amosr/folderol

Append Partition Hull 40MB Hull 120MB
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Ours Handfused Vector
Conduit Pipes Streaming

Figure 14: Runtime for benchmarks; lower is faster.

Minimising the number of states in an intermediate process has
the follow-on effect that the final fused result also has fewer states.
Provided we do not change the order of instructions that require
synchronization with other processes (pull, push or drop), the
fusibility of the overall process network will not be affected.

When the two processes are able to accept the next variable from
the stream at the same time, there is no need for the separate stream
buffer variable. This is the case in Figure 4, and we can perform a
copy-propagation optimisation, replacing all occurrences of v and
x1 with the single variable b1. To increase the chance that we can
perform copy-propagation, we need both processess to want to pull
from the same stream at the same time. Moving the drop instruction
for a particular stream as late as possible prevents a pull instruction
from a second process being scheduled in too early.

6 PROOFS
Our fusion system is formalized in Coq, and we have proved sound-
ness of fusePair: if the fused result process produces a particular
sequence of values on its output channels then the two source pro-
cesses may also produce that same sequence. The converse is not
true, however: concurrent evaluation represents all possible inter-
leavings, of which the fused process is only one.

Theorem Soundness
(P1 : Program L1 C V1) (P2 : Program L2 C V2)
(ss : Streams) (h : Heap) (l1 : L1) (l2 : L2)
(is1 : InputStates) (is2 : InputStates)
: EvalBs (fuse P1 P2) ss h (LX l1 l2 is1 is2)
-> EvalOriginal Var1 P1 P2 is1 ss h l1
/\ EvalOriginal Var2 P2 P1 is2 ss h l2.

EvalBs evaluates the fused program, and EvalOriginal ensures
that the original program evaluates with that program’s subset of the
result heap. The Coq formalization has some small differences from
the system in this paper. Instead of implementing non-deterministic
evaluation we sequentially evaluate each source processes inde-
pendently, and compare the output values to the ones produced by
sequential evaluation of the fused result process. This is sufficient
for our purposes because we are mainly interested in the value
correctness of the fused program, rather than making a statement
about the possible execution orders of the source processes when
run concurrently.
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7 RELATED WORK
This work aims to address the limitations of current combinator-
based array fusion systems. As stated in the introduction, neither
pull-based or push-based fusion is sufficient. Some combinators are
inherently push-based, particularly those with multiple outputs such
as unzip; while others are inherently pull-based, such as zip.

However, short cut fusion [11] relies on inlining which, like
pull-based streams, only occurs when there is a single consumer.
Push-based short cut fusion systems do exist, notably the original
foldr/build formulation, but support neither zip nor unzip [20, 27].

Recent work on stream fusion [17] uses staged computation in
a push-based system to ensure all combinators are inlined. When
streams are used multiple times this causes excessive inlining, which
duplicates work. This can change the semantics for effectful streams.

Data flow fusion [20] is neither pull-based nor push-based, and
supports arbitrary splits and joins. It supports only a fixed set of
standard combinators such as map, filter and fold, and converts
each stream to a series with explicit rate types, similar to the clock
types of Lucid Synchrone [2].

One way to address the difference between pull and push streams
is to explicitly support both [3, 22]. Here, pull streams have the type
Source and represent a source, always ready to be pulled, while
push streams have the type Sink and represent a sink, always ready
to accept data. The addition of push streams allows more programs
to be fused than pull-only systems, but the computation must be
manually split into sources and sinks.

The duality between pull and push arrays has also been explored
in Obsidian [8, 28]. Here the distinction is made for the purpose of
code generation for GPUs rather than fusion, as operations such as
appending pull arrays require conditionals inside the loop, whereas
using push arrays moves these conditionals outside the loop.

Meta-repa [1] supports both array types in a similar way, using
Template Haskell for code generation. It supports fusion on both
array types. When arrays are used multiple times, they must be
explicitly reified with a ‘force’ operation to avoid duplication.

Streaming IO libraries have blossomed in the Haskell ecosys-
tem, generally based on Iteratees [16]. Libraries such as conduit
[25], enumerator [24], machines [18] and pipes [12] are all de-
signed to write stream computations with bounded buffers, but do
not guarantee fusion.

In relation to process calculi, synchronised product has been sug-
gested as a method for fusing Kahn process networks together [10],
but does not appear to have been implemented or evaluated. The
synchronised product of two processes allows either process to take
independent or local steps at any time, but shared actions, such as
when both processes communicate on the same channel, must be
taken in both processes at the same time. When two processes share
multiple channels, synchronised product will fail unless both pro-
cesses read the channels in exactly the same order. In our system the
use of stream buffer variables allows some leeway in when processes
must take shared steps.

Synchronous languages such as LUSTRE [13], Lucy-n [23] and
SIGNAL [19] all use some form of clock calculus and causality
analysis to ensure that programs can be statically scheduled with
bounded buffers [7]. These languages describe passive processes
where values are fed in to streams from outside environments, such

as data coming from sensors. In contrast, our processes are active
and have control over when data is pulled from the source streams,
which is nessesary for multiple input combinators such as merge
and append. Synchronous dataflow languages reject operators with
value dependent control flow such as merge, while general dataflow
languages fall back on less performant dynamic scheduling [4].

Synchronous dataflow (SDF; not to be confused with synchronous
languages above) is a dataflow graph model of computation where
each node has constant, statically known input and output rates.
StreamIt [29] uses synchronous dataflow for scheduling when pos-
sible, otherwise falling back to dynamic scheduling [26]. Boolean
dataflow and integer dataflow [5, 6] extend SDF with boolean and
integer valued control ports, but only support limited control flow
structures.
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A FINITE STREAMS
This appendix briefly describes the finite streams extension, showing
the changes to instructions and the fusion algorithm. The finite
evaluation rules are not shown, as the changes follow the same
structure as the changes to the fusion algorithm.

Figure 15 shows the grammar for instructions and the static input
state. The first group of instructions containing push, drop, case
and jump are unchanged.

The pull instruction is modified to have two output labels, similar
to case. The first, the success branch, is used when the input stream
is still open and pulling succeeds, in which case the variable is set
to the pulled value as before. The second output label, the closed
branch, is used when the input stream has been closed, and the
variable is not written to. This new pull is analogous to a pull
followed by a case in the infinite stream version.

The close instruction is used by a pushing process to close or
end an output stream. Any subsequent pulls from this channel in
other processes will take the closed branch. After an output channel
is closed, it cannot be pushed to and remains closed forever.

Finally, the exit instruction is used once a process is finished
with all its streams, and has nothing left to do. All output streams
must be closed before the process finishes. This instruction has no
output labels, as there is nothing further to execute.

Also in Figure 15, the static input state used for fusion (InputStateF)
must now track closed streams. The new constructor closedF de-
notes that the stream is closed, while the rest is unchanged.

For the fusion algorithm, the top-level function fusePair remains
unchanged. The functions outlabels and swaplabels are not shown
as they are easily modified by adding cases for the new instructions.

Figure 16 shows the modified tryStepPair function. This function
uses the same heuristics to decide which process to execute when
both can progress, but now that the processes can finish with exit,
we must take care to only finish the fused process once both source
processes are finished. The (DeferExit1) and (DeferExit2) clauses
achieve this by forcing the other process to run if one is an exit.
Once both processes are finished, both new clauses will fail while
(Run1) succeeds, using the exit from the first process. Another way
to think of this is that if either process has work to do, the fused
process still has work to do.

Figure 17 shows the modified tryStep function. The clauses for
the unchanged instructions push, drop, case and jump remain un-
changed; these are reordered to the top of the function.

The pull clauses use l′o for the open output label, and l′c for the
closed label. Clause (LocalPull) now uses two output labels, and
leaves the other process as-is.

Clause (SharedPull) applies when the channel state is pending,
meaning there is already a value available. This means that the
channel is not yet closed, and the success branch can be taken.

Clause (SharedPullInject) applies when both processes need to
pull from a shared input. As before, we execute a real pull, this time
with two branches. In the success branch, the input states are set to
pending as before. In the closed branch, the input states are set to
closed so the next and subsequent pulls take the closed branch.

Clause (SharedPullClosed) applies when the channel state is
closed, which means either the other process has pulled and dis-
covered that the channel is closed, or in case of connected input, the

Instruction ::= push Channel Exp Next
| drop Channel Next
| case Exp Next Next
| jump Next

| pull Channel Variable Next Next
| close Channel Next
| exit

InputStateF ::= noneF | pendingF | haveF | closedF

Figure 15: Finite instructions

tryStepPair : (Channel 7→ ChannelType2)
→ LabelF→ Instruction→ LabelF→ Instruction
→ Maybe Instruction

tryStepPair cs lp ip lq iq =
match (tryStep cs lp ip lq, tryStep cs lq iq lp) with
(Just i′p, Just i′q)
| exit← i′q → Just i′p (DeferExit1)
| exit← i′p → Just (swaplabels i′q) (DeferExit2)
| jump _← i′p → Just i′p (PreferJump1)
| jump _← i′q → Just (swaplabels i′q) (PreferJump2)
| pull _ _ _← i′q → Just i′p (DeferPull1)
| pull _ _ _← i′p → Just (swaplabels i′q) (DeferPull2)
(Just i′p, _) → Just i′p (Run1)
(_, Just i′q) → Just (swaplabels i′q) (Run2)
(Nothing, Nothing)→ Nothing (Deadlock)

Figure 16: Fusion step coordination for a pair of processes.

other process has closed the channel. Either way we simply jump,
taking the closed branch of the pull.

Clause (LocalClose) applies when closing a local output.
Clause (SharedClose) applies when closing a connected output.

As with (SharedPush), the other input state for the other process
must be empty and ready to pull from the channel. The input state
for the other process is then set to closed, forcing its next pull to
take the closed branch.

Finally, clause (LocalExit) allows the process to finish. However,
recall that the tryStepPair function has been modified to only exit
when both processes are ready to finish.
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tryStep : (Channel 7→ ChannelType2)→ LabelF→ Instruction→ LabelF→Maybe Instruction
tryStep cs (lp,sp) ip (lq,sq) = match ip with

jump (l′,u′) → Just (jump
(
(l′, sp), (lq, sq), u′

)
) (LocalJump)

case e (l′t ,u
′
t ) (l

′
f ,u
′
f ) → Just (case e

(
(l′t , sp), (lq, sq), u′t

) (
(l′f , sp), (lq, sq), u′f

)
) (LocalCase)

push c e (l′,u′)
| cs[c] = out1
→ Just (push c e

(
(l′, sp), (lq, sq), u′

)
) (LocalPush)

| cs[c] = in1out1 ∧ sq[c] = noneF
→ Just (push c e

(
(l′, sp), (lq, sq[c 7→ pendingF ]), u′[chan c 7→ e]

)
) (SharedPush)

drop c (l′,u′)
| cs[c] = in1 → Just (drop c

(
(l′, sp), (lq, sq), u′

)
) (LocalDrop)

| cs[c] = in1out1 → Just (jump
(
(l′, sp[c 7→ noneF ]), (lq, sq), u′

)
) (ConnectedDrop)

| cs[c] = in2 ∧ (sq[c] = haveF ∨ sq[c] = pendingF ) → Just (jump
(
(l′, sp[c 7→ noneF ]), (lq, sq), u′

)
) (SharedDropOne)

| cs[c] = in2 ∧ sq[c] = noneF → Just (drop c
(
(l′, sp[c 7→ noneF ]), (lq, sq), u′

)
) (SharedDropBoth)

pull c x (l′o,u
′
o) (l

′
c,u
′
c)

| cs[c] = in1
→ Just (pull c x

(
(l′o, sp), (lq, sq), u′o

) (
(l′c, sp), (lq, sq), u′c

)
) (LocalPull)

| (cs[c] = in2∨ cs[c] = in1out1) ∧ sp[c] = pendingF
→ Just (jump

(
(l′o, sp[c 7→ haveF ]), (lq, sq), u′o[x 7→ chan c]

)
) (SharedPull)

| cs[c] = in2 ∧ sp[c] = noneF ∧ sq[c] = noneF
→ Just (pull c (chan c)

(
(lp, sp[c 7→ pendingF ]), (lq, sq[c 7→ pendingF ]), []

)(
(lp, sp[c 7→ closedF ]), (lq, sq[c 7→ closedF ]), []

)
) (SharedPullInject)

| (cs[c] = in2∨ cs[c] = in1out1) ∧ sp[c] = closedF
→ Just (jump

(
(l′c, sp), (lq, sq), u′c

)
) (SharedPullClosed)

close c (l′,u′)
| cs[c] = out1 → Just (close c

(
(l′, sp), (lq, sq), u′

)
) (LocalClose)

| cs[c] = in1out1 ∧ sq[c] = noneF → Just (close c
(
(l′, sp), (lq, sq[c 7→ closedF ]), u′

)
) (SharedClose)

exit → Just exit (LocalExit)

_ | otherwise → Nothing (Blocked)

Figure 17: Fusion step for a single process of the pair.
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B RESULT SIZE
As with any fusion system, we must be careful that the size of the
result code does not become too large when more and more processes
are fused together.

B.1 Fusing Pipelines of Processes
The following figure shows the maximum number of output states in
the result when a particular number of processes are fused together
in a pipelined-manner.
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To produce the above graph we programmatically generated
dataflow networks for all possible pipelined combinations of the map,
filter, scan, group and merge combinators, and tried all possible
fusion orders consiting of adjacent pairs of processes. The merge
combinator itself has two inputs, so only works at the very start of
the pipeline — we present result for pipelines with and without a
merge at the start.

B.2 Fusing Parallel Processes
The following figure shows the number of states in the result when
the various combinations of combinators are fused in parallel, for
example, we might have a map and a filter processing the same
input stream. In both cases the number of states in the result process
grows linearly with the number of processes. In all combinations,
with up to 7 processes there are less than 100 states in the result
process.
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The size of the result process is roughly what one would get when
inlining the definitions of each of the original source processes. This
is common with other systems based on inlining and/or template
meta-programming, and is not prohibitive.

B.3 Fusing Merges
On the other hand, the following figure shows the results for a
pathological case where the size of the output program is exponential
in the number of input processes. The source dataflow networks
consists of N merge processes, N+1 input streams, and a single
output stream. The output of each merge process is the input of the
next, forming a chain of merges. In source notation the network for N
= 3 is sOut = merge sIn1 (merge sIn2 (merge sIn3 sIn4)).
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When fusing two processes the fusion algorithm essentially com-
pares every state in the first process with every state in the second,
computing a cross product. During the fusion transform, as states
in the result process are generated they are added to a finite map —
the instrs field of the process definition. The use of the finite map
ensures that identical states are always combined, but genuinely dif-
ferent states always make it into the result. In the worst case, fusion
of two processes produces O(n∗m) different states, where n and m
are the number of states in each. If we assume the two processes
have about the same number of states then this is O(n2). Fusing the
next process into this result yields O(n3), so overall the worst case
number of states in the result will be O(nk), where k is the number
of processes fused.

In the particular case of merge, the implementation has two oc-
currences of the push instruction. During fusion, the states for the
consuming process are inlined at each occurrence of push. These
states are legitimately different because at each occurence of push
the input channels of the merge process are in different channel
states, and these channel states are included in the overall process
state.
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C COMBINATORS
Here we show the definitions of some combinators. We start with sim-
ple combinators supported by most streaming systems, and progress
to more interesting combinators. Some standard combinators such
as fold, take and append are missing due to the infinite nature of
our streams, but could be implemented with the finite stream exten-
sion. The fact that segmented versions of these combinators can be
implemented is compelling evidence of this.

Many of these combinators take a “default” argument, which is
used to initialise the heap, but the stored value is never actually read.
Ideally these could be left unspecified, or the heap left uninitialised
in cases where it is never read.

C.1 Map
The map combinator applies a function to every element of the
stream. This is some more text.

map
= λ (f : α → β) (default : α)

(sIn: Stream α) (sOut: Stream β).
ν (a: α) (L0..L2: Label).

process
{ ins: { sIn }
, outs: { sOut }
, heap: { a = default }
, label: L0
, instrs: { L0 = pull sIn a L1 []

, L1 = push sOut (f a) L2 []
, L2 = drop sIn L0 [] } }

C.2 Filter
Filter returns a new stream containing only the elements that satisfy
some predicate.

filter
= λ (f : α → Bool) (default : α)

(sIn: Stream α) (sOut: Stream α).
ν (a: α) (L0..L3: Label).

process
{ ins: { sIn }
, outs: { sOut }
, heap: { a = default }
, label: L0
, instrs: { L0 = pull sIn a L1 []

, L1 = case (f a) L2 [] L3 []
, L2 = push sOut a L3 []
, L3 = drop sIn L0 [] } }

C.3 Partition
Partition is similar to filter, but has two output streams: those that
satisfy the predicate, and those that do not. Partition is an inherently
push-based operation, and cannot be supported by pull streams
without buffering.
partition
= λ (f : α → Bool) (default : α)

(sIn: Stream α)
(sOut1: Stream α) (sOut2: Stream α).

ν (a: α) (L0..L4: Label).

process
{ ins: { sIn }
, outs: { sOut1, sOut2 }
, heap: { a = default }
, label: L0
, instrs: { L0 = pull sIn a L1 []

, L1 = case (f a) L2 [] L3 []
, L2 = push sOut1 a L4 []
, L3 = push sOut2 a L4 []
, L4 = drop sIn L0 [] } }

C.4 Zip
Zip, or zip-with, pairwise combines two input streams. Zipping is
an inherently pull-based operation.
zipWith
= λ (f : α → β → γ) (default1 : α) (default2 : β)

(sIn1: Stream α) (sIn2: Stream β)
(sOut: Stream γ).

ν (a: α) (b : β) (L0..L4: Label).

process
{ ins: { sIn1, sIn2 }
, outs: { sOut }
, heap: { a = default1, b = default2 }
, label: L0
, instrs: { L0 = pull sIn1 a L1 []

, L1 = pull sIn2 b L2 []
, L2 = push sOut (f a b) L3 []
, L3 = drop sIn1 L4 []
, L4 = drop sIn2 L0 [] } }

C.5 Scan
Scan is similar to a fold, but instead of returning a single value at the
end, it returns an intermediate value for each element of the stream.
scan
= λ (k : α → β → β) (z : β) (default : α)

(sIn: Stream α) (sOut: Stream β).
ν (a: α) (s : β) (L0..L2: Label).

process
{ ins: { sIn }
, outs: { sOut }
, heap: { a = default, s = z }
, label: L0
, instrs: { L0 = pull sIn a L1 []

, L1 = push sOut s L2 [ s = f a s ]
, L2 = drop sIn L0 [] } }
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C.6 Segmented Fold
Segmented fold performs a fold over each nested stream, using a
segmented representation. Here we are representing nested streams
using one stream for the lengths of each substream, and another
stream containing the values. The output stream has the same rate
as the lengths stream. It reads a count (c) from the lengths stream,
setting the fold state to zero (z). Then it reads count times from the
values stream, updating the fold state. Afterwards, it pushes the final
fold state, and continues to read a new count.

folds
= λ (k : α → β → β) (z : β) (default : α)

(sLens: Stream Nat) (sVals: Stream α)
(sOut: Stream β).

ν (c : Nat) (a: α) (s : β) (L0..L5: Label).

process
{ ins: { sLens, sVals }
, outs: { sOut }
, heap: { c = 0, a = default, s = z }
, label: L0
, instrs: { L0 = pull sLens c L1 [ s = z ]

, L1 = case (c > 0) L2 [] L4 []
, L2 = pull sVals a L3 []
, L3 = drop sVals L1 [ c = c - 1

, s = k s a ]
, L4 = push sOut s L5 []
, L5 = drop sLens L0 [] } }

C.7 Segmented Take
Segmented take computes an n-length prefix of each nested stream.
It starts by reading a count from the lengths stream, then copies at
most n elements. If there are leftovers, it pulls and discards them,
then pulls the next length.

takes
= λ (n : Nat) (default : α)

(sLens: Stream Nat) (sVals: Stream α)
(oLens: Stream Nat) (oVals: Stream α).

ν (c : Nat) (take : Nat) (ix : Nat) (a: α)
(L0..L9: Label).

process
{ ins: { sLens, sVals }
, outs: { oLens, oVals }
, heap: { c = 0, take = 0, ix = 0, a = default }
, label: L0
, instrs: { L0 = pull sLens c L1

[ ix = 0, take = min count n ]
, L1 = push oLens take L2 []
, L2 = case (ix < take) L3 [] L6 []
, L3 = pull sVals a L4 []
, L4 = push oVals a L5 []
, L5 = drop sVals L2 [ix = ix+1]
, L6 = case (ix < c) L7 [] L9 []
, L7 = pull sVals a L8 []
, L8 = drop sVals L6 [ix = ix+1]
, L9 = drop sLens L0 [] } }

C.8 Segmented Append
Segmented append takes two segmented streams as input, and ap-
pends each nested stream. It starts by reading a length from both
lengths streams into a and b, and pushes the sum of both lengths. It
then copies over a elements from the first values stream, then copies
over b elements from the second values stream.
appends
= λ (default : α)

(aLens: Stream Nat) (aVals: Stream α)
(bLens: Stream Nat) (bVals: Stream α)
(oLens: Stream Nat) (oVals: Stream α).

ν (a : Nat) (b : Nat) (v: α) (L0..L12: Label).

process
{ ins: { aLens, aVals, bLens, bVals }
, outs: { oLens, oVals }
, heap: { a = 0, b = 0, v = default }
, label: L0
, instrs: { L0 = pull aLens a L1 []

, L1 = pull bLens b L2 []
, L2 = push oLens (a+b) L3 []

, L3 = case (a > 0) L4 [] L7 []
, L4 = pull aVals v L5 []
, L5 = push oVals v L6 []
, L6 = drop aVals L3 [ a = a-1 ]

, L7 = case (b > 0) L8 [] L11[]
, L8 = pull bVals v L9 []
, L9 = push oVals v L10[]
, L10 = drop bVals L7 [ b = b-1 ]

, L11 = drop aLens L12[]
, L12 = drop bLens L0 [] } }
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